"llm/utils.go" did not exist on "fd4792ec56965a9c8564c3d88212c29a0378583d"
Unverified Commit 9a21b506 authored by wlhgtc's avatar wlhgtc Committed by GitHub
Browse files

Fix eval ref miss in Chinese WWM. (#8115)



* ADD: add whole word mask proxy for both eng and chinese

* MOD: adjust format

* MOD: reformat code

* MOD: update import

* MOD: fix bug

* MOD: add import

* MOD: fix bug

* MOD: decouple code and update readme

* MOD: reformat code

* Update examples/language-modeling/README.md
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update examples/language-modeling/README.md
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update examples/language-modeling/run_language_modeling.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update examples/language-modeling/run_language_modeling.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update examples/language-modeling/run_language_modeling.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update examples/language-modeling/run_language_modeling.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* change wwm to whole_word_mask

* reformat code

* reformat

* format

* Code quality

* ADD: update chinese ref readme

* MOD: small changes

* MOD: small changes2

* update readme

* fix eval ref file miss bug

* format file

* MOD: move ref code to contrib

* MOD: add delimeter check

* reformat code

* refomat code

* Update examples/language-modeling/README.md
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarSylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>
parent fdf893c4
......@@ -118,7 +118,7 @@ def main(args):
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name, "r", encoding="utf-8") as f:
data = f.readlines()
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
ltp_tokenizer = LTP(args.ltp) # faster in GPU device
bert_tokenizer = BertTokenizer.from_pretrained(args.bert)
......
......@@ -63,7 +63,7 @@ python run_language_modeling.py \
--whole_word_mask
```
For Chinese models, it's same with English model with only --mlm`. If using whole-word masking, we need to generate a reference files, case it's char level.
For Chinese models, it's same with English model with only `--mlm`. If using whole-word masking, we need to generate a reference files, because it's char level.
**Q :** Why ref file ?
......@@ -76,15 +76,19 @@ So we need a ref file to tell model which pos of BERT original token should be a
**A :** Cause the best known Chinese WWM BERT is [Chinese-BERT-wwm](https://github.com/ymcui/Chinese-BERT-wwm) by HIT. It works well on so many Chines Task like CLUE (Chinese GLUE).
They use LTP, so if we want to fine-tune their model, we need LTP.
Now LTP only only works well on `transformers==3.2.0`. So we don't add it to requirements.txt.
You need to check to `3.2.0` for `run_chinese_ref.py`. And the code could be found in `examples/contrib`.
```bash
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export LTP_RESOURCE=/path/to/ltp/tokenizer
export BERT_RESOURCE=/path/to/bert/tokenizer
export SAVE_PATH=/path/to/data/ref.txt
python chinese_ref.py \
python examples/contrib/run_chinese_ref.py \
--file_name=$TRAIN_FILE \
--ltp=$LTP_RESOURCE
--ltp=$LTP_RESOURCE \
--bert=$BERT_RESOURCE \
--save_path=$SAVE_PATH
```
......
......@@ -103,9 +103,13 @@ class DataTrainingArguments:
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
chinese_ref_file: Optional[str] = field(
train_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input ref data file for whole word mask in Chinees."},
metadata={"help": "An optional input train ref data file for whole word mask in Chinese."},
)
eval_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."},
)
line_by_line: bool = field(
default=False,
......@@ -148,16 +152,16 @@ def get_dataset(
evaluate: bool = False,
cache_dir: Optional[str] = None,
):
def _dataset(file_path):
def _dataset(file_path, ref_path=None):
if args.line_by_line:
if args.chinese_ref_file is not None:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask")
return LineByLineWithRefDataset(
tokenizer=tokenizer,
file_path=file_path,
block_size=args.block_size,
ref_path=args.chinese_ref_file,
ref_path=ref_path,
)
return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
......@@ -171,11 +175,11 @@ def get_dataset(
)
if evaluate:
return _dataset(args.eval_data_file)
return _dataset(args.eval_data_file, args.eval_ref_file)
elif args.train_data_files:
return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)])
else:
return _dataset(args.train_data_file)
return _dataset(args.train_data_file, args.train_ref_file)
def main():
......
......@@ -128,15 +128,17 @@ class LineByLineWithRefDataset(Dataset):
logger.info("Creating features from dataset file at %s", file_path)
logger.info("Use ref segment results at %s", ref_path)
with open(file_path, encoding="utf-8") as f:
data = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
self.examples = batch_encoding["input_ids"]
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()]
# Get ref inf from file
with open(ref_path, encoding="utf-8") as f:
ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
assert len(data) == len(ref)
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
self.examples = batch_encoding["input_ids"]
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
n = len(self.examples)
for i in range(n):
self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment