Unverified Commit 99fd3eb4 authored by Anton Lozhkov's avatar Anton Lozhkov Committed by GitHub
Browse files

Add the XTREME-S fine-tuning example (#15985)

* CTC+classification draft

* CTC+classification draft

* style

* multilingual runs

* Fix race condition during processor.from_reatrained

* Merge covost experiments

* Add README

* Quality

* Switch to .all configs

* Fix typos
parent db4dd44a
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# XTREME-S benchmark examples
*Maintainers: [Anton Lozhkov](https://github.com/anton-l) and [Patrick von Platen](https://github.com/patrickvonplaten)*
The Cross-lingual TRansfer Evaluation of Multilingual Encoders for Speech (XTREME-S) benchmark is a benchmark designed to evaluate speech representations across languages, tasks, domains and data regimes. It covers XX typologically diverse languages and seven downstream tasks grouped in four families: speech recognition, translation, classification and retrieval.
XTREME-S covers speech recognition with BABEL, Multilingual LibriSpeech (MLS) and VoxPopuli, speech translation with CoVoST-2, speech classification with LangID (FLoRes) and intent classification (MInds-14) and finally speech retrieval with speech-speech translation data mining (bi-speech retrieval). Each of the tasks covers a subset of the 40 languages included in XTREME-S (shown here with their ISO 639-1 codes): ar, as, ca, cs, cy, da, de, en, en, en, en, es, et, fa, fi, fr, hr, hu, id, it, ja, ka, ko, lo, lt, lv, mn, nl, pl, pt, ro, ru, sk, sl, sv, sw, ta, tl, tr and zh.
Paper: `<TODO>`
Dataset: [https://huggingface.co/datasets/google/xtreme_s](https://huggingface.co/datasets/google/xtreme_s)
## Fine-tuning for the XTREME-S tasks
Based on the [`run_xtreme_s.py`](https://github.com/huggingface/transformers/blob/master/examples/research_projects/xtreme-s/run_xtreme_s.py) script.
This script can fine-tune any of the pretrained speech models on the [hub](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition) on the [XTREME-S dataset](https://huggingface.co/datasets/google/xtreme_s) tasks.
XTREME-S is made up of 7 different task-specific subsets. Here is how to run the script on each of them:
```bash
export TASK_NAME=mls.all
python run_xtreme_s.py \
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
--dataset_name="google/xtreme_s" \
--dataset_config_name="${TASK_NAME}" \
--eval_split_name="validation" \
--output_dir="xtreme_s_xlsr_${TASK_NAME}" \
--num_train_epochs=100 \
--per_device_train_batch_size=32 \
--learning_rate="3e-4" \
--target_column_name="transcription" \
--save_steps=500 \
--eval_steps=500 \
--freeze_feature_encoder \
--gradient_checkpointing \
--fp16 \
--group_by_length \
--do_train \
--do_eval \
--push_to_hub
```
where `TASK_NAME` can be one of: `mls.all, voxpopuli, covost2.all, fleurs.all, minds14.all`.
We get the following results on the test set of the benchmark's datasets.
The corresponding training commands for each dataset are given in the sections below:
| Task | Dataset | Result | Fine-tuned model & logs | Training time | GPUs |
|-----------------------|-----------|-----------------------|--------------------------------------------------------------------|---------------|--------|
| Speech Recognition | MLS | 30.33 WER | [here](https://huggingface.co/anton-l/xtreme_s_xlsr_300m_mls/) | 18:47:25 | 8xV100 |
| Speech Recognition | VoxPopuli | - | - | - | - |
| Speech Recognition | FLEURS | - | - | - | - |
| Speech Translation | CoVoST-2 | - | - | - | - |
| Speech Classification | Minds-14 | 94.74 F1 / 94.70 Acc. | [here](https://huggingface.co/anton-l/xtreme_s_xlsr_300m_minds14/) | 04:46:40 | 2xA100 |
| Speech Classification | FLEURS | - | - | - | - |
| Speech Retrieval | FLEURS | - | - | - | - |
### Speech Recognition with MLS
The following command shows how to fine-tune the [XLS-R](https://huggingface.co/docs/transformers/master/model_doc/xls_r) model on [XTREME-S MLS](https://huggingface.co/datasets/google/xtreme_s#multilingual-librispeech-mls) using 8 GPUs in half-precision.
```bash
python -m torch.distributed.launch \
--nproc_per_node=8 \
run_xtreme_s.py \
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
--dataset_name="google/xtreme_s" \
--dataset_config_name="mls.all" \
--eval_split_name="test" \
--output_dir="xtreme_s_xlsr_300m_mls" \
--overwrite_output_dir \
--num_train_epochs=100 \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=1 \
--gradient_accumulation_steps=2 \
--learning_rate="3e-4" \
--warmup_steps=3000 \
--evaluation_strategy="steps" \
--target_column_name="transcription" \
--max_duration_in_seconds=20 \
--save_steps=500 \
--eval_steps=500 \
--logging_steps=1 \
--layerdrop=0.0 \
--mask_time_prob=0.3 \
--mask_time_length=10 \
--mask_feature_prob=0.1 \
--mask_feature_length=64 \
--freeze_feature_encoder \
--gradient_checkpointing \
--fp16 \
--group_by_length \
--do_train \
--do_eval \
--metric_for_best_model="wer" \
--greater_is_better=False \
--load_best_model_at_end \
--push_to_hub
```
On 8 V100 GPUs, this script should run in ~19 hours and yield a cross-entropy loss of **0.6215** and word error rate of **30.33**
### Speech Classification with Minds-14
The following command shows how to fine-tune the [XLS-R](https://huggingface.co/docs/transformers/master/model_doc/xls_r) model on [XTREME-S MLS](https://huggingface.co/datasets/google/xtreme_s#intent-classification---minds-14) using 2 GPUs in half-precision.
```bash
python -m torch.distributed.launch \
--nproc_per_node=2 \
run_xtreme_s.py \
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
--dataset_name="google/xtreme_s" \
--dataset_config_name="minds14.all" \
--eval_split_name="test" \
--output_dir="xtreme_s_xlsr_300m_minds14" \
--overwrite_output_dir \
--num_train_epochs=50 \
--per_device_train_batch_size=32 \
--per_device_eval_batch_size=8 \
--gradient_accumulation_steps=1 \
--learning_rate="3e-4" \
--warmup_steps=1500 \
--evaluation_strategy="steps" \
--target_column_name="intent_class" \
--max_duration_in_seconds=30 \
--save_steps=200 \
--eval_steps=200 \
--logging_steps=1 \
--layerdrop=0.0 \
--mask_time_prob=0.3 \
--mask_time_length=10 \
--mask_feature_prob=0.1 \
--mask_feature_length=64 \
--freeze_feature_encoder \
--gradient_checkpointing \
--fp16 \
--group_by_length \
--do_train \
--do_eval \
--metric_for_best_model="f1" \
--greater_is_better=True \
--load_best_model_at_end \
--push_to_hub
```
On 2 A100 GPUs, this script should run in ~5 hours and yield a cross-entropy loss of **0.2890** and F1 score of **94.74**
datasets >= 1.18.0
torch >= 1.5
torchaudio
librosa
jiwer
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment