Unverified Commit 986526a0 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Replace `as_target` context managers by direct calls (#18325)



* Preliminary work on tokenizers

* Quality + fix tests

* Treat processors

* Fix pad

* Remove all uses of  in tests, docs and examples

* Replace all as_target_tokenizer

* Fix tests

* Fix quality

* Update examples/flax/image-captioning/run_image_captioning_flax.py
Co-authored-by: default avataramyeroberts <amy@huggingface.co>

* Style
Co-authored-by: default avataramyeroberts <amy@huggingface.co>
parent a64bcb56
......@@ -55,9 +55,7 @@ tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="en
src_text = "Life is like a box of chocolates."
tgt_text = "La vie est comme une boîte de chocolat."
model_inputs = tokenizer(src_text, return_tensors="pt")
with tokenizer.as_target_tokenizer():
labels = tokenizer(tgt_text, return_tensors="pt").input_ids
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
loss = model(**model_inputs, labels=labels) # forward pass
```
......
......@@ -155,7 +155,7 @@ Example of translating english to many romance languages, using old-style 2 char
## MarianTokenizer
[[autodoc]] MarianTokenizer
- as_target_tokenizer
- build_inputs_with_special_tokens
## MarianModel
......
......@@ -34,8 +34,8 @@ model is multilingual it expects the sequences in a different format. A special
source and target text. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The
target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
The regular [`~MBartTokenizer.__call__`] will encode source text format, and it should be wrapped
inside the context manager [`~MBartTokenizer.as_target_tokenizer`] to encode target text format.
The regular [`~MBartTokenizer.__call__`] will encode source text format passed as first argument or with the `text`
keyword, and target text format passed with the `text_label` keyword argument.
- Supervised training
......@@ -46,13 +46,11 @@ inside the context manager [`~MBartTokenizer.as_target_tokenizer`] to encode tar
>>> example_english_phrase = "UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")
>>> with tokenizer.as_target_tokenizer():
... labels = tokenizer(expected_translation_romanian, return_tensors="pt")
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> # forward pass
>>> model(**inputs, labels=batch["labels"])
>>> model(**inputs)
```
- Generation
......@@ -108,11 +106,9 @@ tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_
src_text = " UN Chief Says There Is No Military Solution in Syria"
tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
model_inputs = tokenizer(src_text, return_tensors="pt")
with tokenizer.as_target_tokenizer():
labels = tokenizer(tgt_text, return_tensors="pt").input_ids
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
model(**model_inputs, labels=labels) # forward pass
model(**model_inputs) # forward pass
```
- Generation
......@@ -154,7 +150,6 @@ tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
## MBartTokenizer
[[autodoc]] MBartTokenizer
- as_target_tokenizer
- build_inputs_with_special_tokens
## MBartTokenizerFast
......
......@@ -48,7 +48,6 @@ This model was contributed by [cwkeam](https://huggingface.co/cwkeam). The origi
- save_pretrained
- batch_decode
- decode
- as_target_processor
## MCTCTModel
......
......@@ -91,7 +91,6 @@ UN-Chef sagt, es gibt keine militärische Lösung in Syrien
## NllbTokenizer
[[autodoc]] NllbTokenizer
- as_target_tokenizer
- build_inputs_with_special_tokens
## NllbTokenizerFast
......
......@@ -45,8 +45,9 @@ target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
However, for fine-tuning, in some cases no language token is provided in cases where a single language is used. Please refer to [the paper](https://arxiv.org/abs/2103.06333) to learn more about this.
In cases where the language code is needed, The regular [`~PLBartTokenizer.__call__`] will encode source text format, and it should be wrapped
inside the context manager [`~PLBartTokenizer.as_target_tokenizer`] to encode target text format.
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
when you pass texts as the first argument or with the keyword argument `text`, and will encode target text format if
it's passed with the `text_target` keyword argument.
- Supervised training
......@@ -56,11 +57,7 @@ inside the context manager [`~PLBartTokenizer.as_target_tokenizer`] to encode ta
>>> tokenizer = PLBartTokenizer.from_pretrained("uclanlp/plbart-base", src_lang="en_XX", tgt_lang="python")
>>> example_python_phrase = "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])"
>>> expected_translation_english = "Returns the maximum value of a b c."
>>> inputs = tokenizer(example_python_phrase, return_tensors="pt")
>>> with tokenizer.as_target_tokenizer():
... labels = tokenizer(expected_translation_english, return_tensors="pt")
>>> inputs["labels"] = labels["input_ids"]
>>> # forward pass
>>> inputs = tokenizer(example_python_phrase, text_target=expected_translation_english, return_tensors="pt")
>>> model(**inputs)
```
......@@ -88,7 +85,6 @@ inside the context manager [`~PLBartTokenizer.as_target_tokenizer`] to encode ta
## PLBartTokenizer
[[autodoc]] PLBartTokenizer
- as_target_tokenizer
- build_inputs_with_special_tokens
## PLBartModel
......
......@@ -107,7 +107,7 @@ speech inputs) and `labels` (which are the `input_ids` of the encoded target seq
>>> labels = tokenizer(ds[0]["text"], return_tensors="pt").input_ids
>>> # the forward function automatically creates the correct decoder_input_ids
>>> loss = model(input_values, labels=labels).loss
>>> loss = model(**input_features).loss
>>> loss.backward()
```
......
......@@ -120,7 +120,6 @@ See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look
- save_pretrained
- batch_decode
- decode
- as_target_processor
## Speech2TextModel
......
......@@ -114,7 +114,6 @@ See [model hub](https://huggingface.co/models?filter=speech2text2) to look for S
- save_pretrained
- batch_decode
- decode
- as_target_processor
## Speech2Text2ForCausalLM
......
......@@ -94,7 +94,6 @@ See the [model hub](https://huggingface.co/models?filter=trocr) to look for TrOC
- save_pretrained
- batch_decode
- decode
- as_target_processor
## TrOCRForCausalLM
......
......@@ -62,7 +62,6 @@ This model was contributed by [patrickvonplaten](https://huggingface.co/patrickv
- save_pretrained
- batch_decode
- decode
- as_target_processor
## Wav2Vec2ProcessorWithLM
......@@ -73,7 +72,6 @@ This model was contributed by [patrickvonplaten](https://huggingface.co/patrickv
- save_pretrained
- batch_decode
- decode
- as_target_processor
## Wav2Vec2 specific outputs
......
......@@ -486,10 +486,8 @@ A processor combines a feature extractor and tokenizer. Load a processor with [`
>>> def prepare_dataset(example):
... audio = example["audio"]
... example["input_values"] = processor(audio["array"], sampling_rate=16000)
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
... with processor.as_target_processor():
... example["labels"] = processor(example["text"]).input_ids
... return example
```
......
......@@ -109,11 +109,10 @@ The preprocessing function needs to:
>>> def prepare_dataset(batch):
... audio = batch["audio"]
... batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
... batch = processor(audio=audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
... batch["input_length"] = len(batch["input_values"])
... with processor.as_target_processor():
... batch["labels"] = processor(batch["transcription"]).input_ids
... batch["labels"] = processor(text=batch["transcription"]).input_ids
... return batch
```
......@@ -146,17 +145,9 @@ Unlike other data collators, this specific data collator needs to apply a differ
... input_features = [{"input_values": feature["input_values"]} for feature in features]
... label_features = [{"input_ids": feature["labels"]} for feature in features]
... batch = self.processor.pad(
... input_features,
... padding=self.padding,
... return_tensors="pt",
... )
... with self.processor.as_target_processor():
... labels_batch = self.processor.pad(
... label_features,
... padding=self.padding,
... return_tensors="pt",
... )
... batch = self.processor.pad(input_features, padding=self.padding, return_tensors="pt")
... labels_batch = self.processor.pad(labels=label_features, padding=self.padding, return_tensors="pt")
... # replace padding with -100 to ignore loss correctly
... labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
......
......@@ -67,7 +67,7 @@ Load the T5 tokenizer to process `text` and `summary`:
The preprocessing function needs to:
1. Prefix the input with a prompt so T5 knows this is a summarization task. Some models capable of multiple NLP tasks require prompting for specific tasks.
2. Use a context manager with the `as_target_tokenizer()` function to parallelize tokenization of inputs and labels.
2. Use the keyword `text_target` argument when tokenizing labels.
3. Truncate sequences to be no longer than the maximum length set by the `max_length` parameter.
```py
......@@ -78,8 +78,7 @@ The preprocessing function needs to:
... inputs = [prefix + doc for doc in examples["text"]]
... model_inputs = tokenizer(inputs, max_length=1024, truncation=True)
... with tokenizer.as_target_tokenizer():
... labels = tokenizer(examples["summary"], max_length=128, truncation=True)
... labels = tokenizer(text_target=examples["summary"], max_length=128, truncation=True)
... model_inputs["labels"] = labels["input_ids"]
... return model_inputs
......
......@@ -78,12 +78,7 @@ The preprocessing function needs to:
>>> def preprocess_function(examples):
... inputs = [prefix + example[source_lang] for example in examples["translation"]]
... targets = [example[target_lang] for example in examples["translation"]]
... model_inputs = tokenizer(inputs, max_length=128, truncation=True)
... with tokenizer.as_target_tokenizer():
... labels = tokenizer(targets, max_length=128, truncation=True)
... model_inputs["labels"] = labels["input_ids"]
... model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
... return model_inputs
```
......
......@@ -471,10 +471,8 @@ Un processor combina un extractor de características y un tokenizador. Cargue u
>>> def prepare_dataset(example):
... audio = example["audio"]
... example["input_values"] = processor(audio["array"], sampling_rate=16000)
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
... with processor.as_target_processor():
... example["labels"] = processor(example["text"]).input_ids
... return example
```
......
......@@ -471,10 +471,8 @@ Un processor combina un estrattore di caratteristiche e un tokenizer. Carica un
>>> def prepare_dataset(example):
... audio = example["audio"]
... example["input_values"] = processor(audio["array"], sampling_rate=16000)
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
... with processor.as_target_processor():
... example["labels"] = processor(example["text"]).input_ids
... return example
```
......
......@@ -552,11 +552,14 @@ def main():
targets = captions
model_inputs = {}
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(
targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np"
)
labels = tokenizer(
text_target=targets,
max_length=max_target_length,
padding="max_length",
truncation=True,
return_tensors="np",
)
model_inputs["labels"] = labels["input_ids"]
decoder_input_ids = shift_tokens_right_fn(
labels["input_ids"], model.config.pad_token_id, model.config.decoder_start_token_id
......
......@@ -590,10 +590,13 @@ def main():
)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(
targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np"
)
labels = tokenizer(
text_target=targets,
max_length=max_target_length,
padding="max_length",
truncation=True,
return_tensors="np",
)
model_inputs["labels"] = labels["input_ids"]
decoder_input_ids = shift_tokens_right_fn(
......
......@@ -453,9 +453,8 @@ def main():
inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)
model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_answer_length, padding=padding, truncation=True)
# Tokenize targets with text_target=...
labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
......@@ -479,9 +478,8 @@ def main():
return_overflowing_tokens=True,
return_offsets_mapping=True,
)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_answer_length, padding=padding, truncation=True)
# Tokenize targets with the `text_target` keyword argument
labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment