Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
9050ffe0
Commit
9050ffe0
authored
Mar 09, 2020
by
Patrick von Platen
Browse files
delete w! -> need to be more careful with vim
parent
efb61923
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
430 deletions
+0
-430
w!
w!
+0
-430
No files found.
w!
deleted
100644 → 0
View file @
efb61923
#
coding
=
utf
-
8
#
Copyright
2018
The
Google
AI
Language
Team
Authors
.
#
#
Licensed
under
the
Apache
License
,
Version
2.0
(
the
"License"
);
#
you
may
not
use
this
file
except
in
compliance
with
the
License
.
#
You
may
obtain
a
copy
of
the
License
at
#
#
http
://
www
.
apache
.
org
/
licenses
/
LICENSE
-
2.0
#
#
Unless
required
by
applicable
law
or
agreed
to
in
writing
,
software
#
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS
,
#
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND
,
either
express
or
implied
.
#
See
the
License
for
the
specific
language
governing
permissions
and
#
limitations
under
the
License
.
import
unittest
from
transformers
import
is_torch_available
from
.
test_configuration_common
import
ConfigTester
from
.
test_modeling_common
import
ModelTesterMixin
,
ids_tensor
from
.
utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
import
torch
from
transformers
import
(
XLMConfig
,
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMForSequenceClassification
,
XLMForQuestionAnsweringSimple
,
)
from
transformers
.
modeling_xlm
import
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
@
require_torch
class
XLMModelTest
(
ModelTesterMixin
,
unittest
.
TestCase
):
all_model_classes
=
(
(
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMForSequenceClassification
,
XLMForQuestionAnsweringSimple
,
)
if
is_torch_available
()
else
()
)
all_generative_model_classes
=
(
(
XLMWithLMHeadModel
,)
if
is_torch_available
()
else
()
)
#
TODO
(
PVP
):
Check
other
models
whether
language
generation
is
also
applicable
class
XLMModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_lengths
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
gelu_activation
=
True
,
sinusoidal_embeddings
=
False
,
causal
=
False
,
asm
=
False
,
n_langs
=
2
,
vocab_size
=
99
,
n_special
=
0
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
summary_type
=
"last"
,
use_proj
=
True
,
scope
=
None
,
bos_token_id
=
0
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_lengths
=
use_input_lengths
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
gelu_activation
=
gelu_activation
self
.
sinusoidal_embeddings
=
sinusoidal_embeddings
self
.
asm
=
asm
self
.
n_langs
=
n_langs
self
.
vocab_size
=
vocab_size
self
.
n_special
=
n_special
self
.
summary_type
=
summary_type
self
.
causal
=
causal
self
.
use_proj
=
use_proj
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
n_langs
=
n_langs
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
summary_type
=
summary_type
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
self
.
bos_token_id
=
bos_token_id
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
2
).
float
()
input_lengths
=
None
if
self
.
use_input_lengths
:
input_lengths
=
(
ids_tensor
([
self
.
batch_size
],
vocab_size
=
2
)
+
self
.
seq_length
-
2
)
#
small
variation
of
seq_length
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
n_langs
)
sequence_labels
=
None
token_labels
=
None
is_impossible_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
is_impossible_labels
=
ids_tensor
([
self
.
batch_size
],
2
).
float
()
config
=
XLMConfig
(
vocab_size
=
self
.
vocab_size
,
n_special
=
self
.
n_special
,
emb_dim
=
self
.
hidden_size
,
n_layers
=
self
.
num_hidden_layers
,
n_heads
=
self
.
num_attention_heads
,
dropout
=
self
.
hidden_dropout_prob
,
attention_dropout
=
self
.
attention_probs_dropout_prob
,
gelu_activation
=
self
.
gelu_activation
,
sinusoidal_embeddings
=
self
.
sinusoidal_embeddings
,
asm
=
self
.
asm
,
causal
=
self
.
causal
,
n_langs
=
self
.
n_langs
,
max_position_embeddings
=
self
.
max_position_embeddings
,
initializer_range
=
self
.
initializer_range
,
summary_type
=
self
.
summary_type
,
use_proj
=
self
.
use_proj
,
bos_token_id
=
self
.
bos_token_id
,
)
return
(
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
,
)
def
check_loss_output
(
self
,
result
):
self
.
parent
.
assertListEqual
(
list
(
result
[
"loss"
].
size
()),
[])
def
create_and_check_xlm_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
,
):
model
=
XLMModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
outputs
=
model
(
input_ids
,
lengths
=
input_lengths
,
langs
=
token_type_ids
)
outputs
=
model
(
input_ids
,
langs
=
token_type_ids
)
outputs
=
model
(
input_ids
)
sequence_output
=
outputs
[
0
]
result
=
{
"sequence_output"
:
sequence_output
,
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"sequence_output"
].
size
()),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
]
)
def
create_and_check_xlm_lm_head
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
,
):
model
=
XLMWithLMHeadModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
loss
,
logits
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
result
=
{
"loss"
:
loss
,
"logits"
:
logits
,
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"loss"
].
size
()),
[])
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
size
()),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
]
)
def
create_and_check_xlm_simple_qa
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
,
):
model
=
XLMForQuestionAnsweringSimple
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
outputs
=
model
(
input_ids
)
outputs
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
)
loss
,
start_logits
,
end_logits
=
outputs
result
=
{
"loss"
:
loss
,
"start_logits"
:
start_logits
,
"end_logits"
:
end_logits
,
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"start_logits"
].
size
()),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"end_logits"
].
size
()),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
check_loss_output
(
result
)
def
create_and_check_xlm_qa
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
,
):
model
=
XLMForQuestionAnswering
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
outputs
=
model
(
input_ids
)
start_top_log_probs
,
start_top_index
,
end_top_log_probs
,
end_top_index
,
cls_logits
=
outputs
outputs
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
cls_index
=
sequence_labels
,
is_impossible
=
is_impossible_labels
,
p_mask
=
input_mask
,
)
outputs
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
cls_index
=
sequence_labels
,
is_impossible
=
is_impossible_labels
,
)
(
total_loss
,)
=
outputs
outputs
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
)
(
total_loss
,)
=
outputs
result
=
{
"loss"
:
total_loss
,
"start_top_log_probs"
:
start_top_log_probs
,
"start_top_index"
:
start_top_index
,
"end_top_log_probs"
:
end_top_log_probs
,
"end_top_index"
:
end_top_index
,
"cls_logits"
:
cls_logits
,
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"loss"
].
size
()),
[])
self
.
parent
.
assertListEqual
(
list
(
result
[
"start_top_log_probs"
].
size
()),
[
self
.
batch_size
,
model
.
config
.
start_n_top
]
)
self
.
parent
.
assertListEqual
(
list
(
result
[
"start_top_index"
].
size
()),
[
self
.
batch_size
,
model
.
config
.
start_n_top
]
)
self
.
parent
.
assertListEqual
(
list
(
result
[
"end_top_log_probs"
].
size
()),
[
self
.
batch_size
,
model
.
config
.
start_n_top
*
model
.
config
.
end_n_top
],
)
self
.
parent
.
assertListEqual
(
list
(
result
[
"end_top_index"
].
size
()),
[
self
.
batch_size
,
model
.
config
.
start_n_top
*
model
.
config
.
end_n_top
],
)
self
.
parent
.
assertListEqual
(
list
(
result
[
"cls_logits"
].
size
()),
[
self
.
batch_size
])
def
create_and_check_xlm_sequence_classif
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
,
):
model
=
XLMForSequenceClassification
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
(
logits
,)
=
model
(
input_ids
)
loss
,
logits
=
model
(
input_ids
,
labels
=
sequence_labels
)
result
=
{
"loss"
:
loss
,
"logits"
:
logits
,
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"loss"
].
size
()),
[])
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
size
()),
[
self
.
batch_size
,
self
.
type_sequence_label_size
]
)
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
,
)
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
,
"token_type_ids"
:
token_type_ids
,
"lengths"
:
input_lengths
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
XLMModelTest
.
XLMModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
XLMConfig
,
emb_dim
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_xlm_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_model
(*
config_and_inputs
)
def
test_xlm_lm_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_lm_head
(*
config_and_inputs
)
def
test_xlm_simple_qa
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_simple_qa
(*
config_and_inputs
)
def
test_xlm_qa
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_qa
(*
config_and_inputs
)
def
test_xlm_sequence_classif
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_sequence_classif
(*
config_and_inputs
)
@
slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
list
(
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
XLMModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
class
XLMModelLanguageGenerationTest
(
unittest
.
TestCase
):
@
slow
def
test_lm_generate_xlm_mlm_en_2048
(
self
):
model
=
XLMWithLMHeadModel
.
from_pretrained
(
"xlm-mlm-en-2048"
)
input_ids
=
torch
.
tensor
([[
1
,
14
,
2232
,
26
,
1
]]).
long
()
#
The
dog
is
cute
expected_output_ids
=
[
1
,
14
,
2232
,
26
,
1
,
567
,
26
,
32
,
149
,
149
,
149
,
149
,
149
,
149
,
149
,
149
,
149
,
149
,
149
,
149
,
]
#
The
dog
is
nothing
is
it
!!!!!!!!!!!! TODO (PVP): this sentence (and others I tried) does not make much sense, there seems to be a problem with xlm language generation.
output_ids
=
model
.
generate
(
input_ids
)
self
.
assertListEqual
(
output_ids
[
0
].
tolist
(),
expected_output_ids
,
do_sample
=
False
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment