"docs/source/vscode:/vscode.git/clone" did not exist on "b53004fdcefa6b74ce883c3853c983d0beb14bdd"
Unverified Commit 8ee1d472 authored by Wang, Yi's avatar Wang, Yi Committed by GitHub
Browse files

fix image-to-text batch incorrect output issue (#29342)



* fix image-to-text batch incorrect output issue
Signed-off-by: default avatarWang, Yi A <yi.a.wang@intel.com>

* add ci test
Signed-off-by: default avatarWang, Yi <yi.a.wang@intel.com>

* update ci test
Signed-off-by: default avatarWang, Yi <yi.a.wang@intel.com>

---------
Signed-off-by: default avatarWang, Yi A <yi.a.wang@intel.com>
Signed-off-by: default avatarWang, Yi <yi.a.wang@intel.com>
parent 8e589c83
......@@ -73,7 +73,7 @@ class PipelineIterator(IterableDataset):
"""
if isinstance(self._loader_batch_data, torch.Tensor):
# Batch data is simple tensor, just fetch the slice
result = self._loader_batch_data[self._loader_batch_index]
result = self._loader_batch_data[self._loader_batch_index].unsqueeze(0)
else:
# Batch data is assumed to be BaseModelOutput (or dict)
loader_batched = {}
......
......@@ -142,6 +142,35 @@ class ImageToTextPipelineTests(unittest.TestCase):
outputs = pipe(image, prompt=prompt)
self.assertTrue(outputs[0]["generated_text"].startswith(prompt))
@require_torch
def test_consistent_batching_behaviour(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe([image, image], prompt=prompt)
self.assertTrue(outputs[0][0]["generated_text"].startswith(prompt))
self.assertTrue(outputs[1][0]["generated_text"].startswith(prompt))
outputs = pipe([image, image], prompt=prompt, batch_size=2)
self.assertTrue(outputs[0][0]["generated_text"].startswith(prompt))
self.assertTrue(outputs[1][0]["generated_text"].startswith(prompt))
from torch.utils.data import Dataset
class MyDataset(Dataset):
def __len__(self):
return 5
def __getitem__(self, i):
return "./tests/fixtures/tests_samples/COCO/000000039769.png"
dataset = MyDataset()
for batch_size in (1, 2, 4):
outputs = pipe(dataset, prompt=prompt, batch_size=batch_size if batch_size > 1 else None)
self.assertTrue(list(outputs)[0][0]["generated_text"].startswith(prompt))
self.assertTrue(list(outputs)[1][0]["generated_text"].startswith(prompt))
@slow
@require_torch
def test_large_model_pt(self):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment