"tests/models/barthez/test_tokenization_barthez.py" did not exist on "26f8b2cb1029cee7d355c5c25f253c08107883fe"
Unverified Commit 8dcfaea0 authored by Qbiwan's avatar Qbiwan Committed by GitHub
Browse files

Update run_xnli.py to use Datasets library (#9829)

* remove xnli_compute_metrics, add load_dataset, load_metric, set_seed,metric.compute,load_metric

* fix

* fix

* fix

* push

* fix

* everything works

* fix init

* fix

* special treatment for sepconv1d

* style

* 🙏🏽

* add doc and cleanup


* fix doc

* fix doc again

* fix doc again

* Apply suggestions from code review

* make style

* Proposal that should work

* Remove needless code

* Fix test

* Apply suggestions from code review

* remove xnli_compute_metrics, add load_dataset, load_metric, set_seed,metric.compute,load_metric

* amend README

* removed data_args.task_name and replaced with task_name = "xnli"; use split function to load train and validation dataset separately; remove __post_init__; remove flag --task_name from README.

* removed dict task_to_keys, use str "xnli" instead of variable task_name, change preprocess_function to use examples["premise"], examples["hypothesis"] directly, remove sentence1_key and sentence2_key, change compute_metrics function to cater only to accuracy metric, add condition for train_langauge is None when using dataset.load_dataset()

* removed `torch.distributed.barrier()` and `import torch` as `from_pretrained` is able to do the work; amend README
parent 77b86284
......@@ -143,23 +143,15 @@ Based on the script [`run_xnli.py`](https://github.com/huggingface/transformers/
#### Fine-tuning on XNLI
This example code fine-tunes mBERT (multi-lingual BERT) on the XNLI dataset. It runs in 106 mins
on a single tesla V100 16GB. The data for XNLI can be downloaded with the following links and should be both saved (and un-zipped) in a
`$XNLI_DIR` directory.
* [XNLI 1.0](https://cims.nyu.edu/~sbowman/xnli/XNLI-1.0.zip)
* [XNLI-MT 1.0](https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip)
This example code fine-tunes mBERT (multi-lingual BERT) on the XNLI dataset. It runs in 106 mins on a single tesla V100 16GB.
```bash
export XNLI_DIR=/path/to/XNLI
python run_xnli.py \
--model_name_or_path bert-base-multilingual-cased \
--language de \
--train_language en \
--do_train \
--do_eval \
--data_dir $XNLI_DIR \
--per_device_train_batch_size 32 \
--learning_rate 5e-5 \
--num_train_epochs 2.0 \
......
......@@ -17,611 +17,308 @@
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
Adapted from `examples/text-classification/run_glue.py`"""
import argparse
import glob
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from datasets import load_dataset, load_metric
import transformers
from transformers import (
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
get_linear_schedule_with_warmup,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import xnli_compute_metrics as compute_metrics
from transformers import xnli_output_modes as output_modes
from transformers import xnli_processors as processors
from transformers.trainer_utils import is_main_process
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
from transformers.trainer_utils import get_last_checkpoint, is_main_process
logger = logging.getLogger(__name__)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
max_seq_length: Optional[int] = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to gobal_step of last saved checkpoint from model path
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
set_seed(args) # Added here for reproductibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert"] else None
) # XLM and DistilBERT don't use segment_ids
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
server_ip: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
server_port: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
eval_task_names = (args.task_name,)
eval_outputs_dirs = (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert"] else None
) # XLM and DistilBERT don't use segment_ids
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
else:
raise ValueError("No other `output_mode` for XNLI.")
result = compute_metrics(eval_task, preds, out_label_ids)
results.update(result)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task](language=args.language, train_language=args.train_language)
output_mode = output_modes[task]
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}_{}_{}".format(
"test" if evaluate else "train",
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
str(task),
str(args.train_language if (not evaluate and args.train_language is not None) else args.language),
),
model_name_or_path: str = field(
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
examples = (
processor.get_test_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
language: str = field(
default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
)
features = convert_examples_to_features(
examples,
tokenizer,
max_length=args.max_seq_length,
label_list=label_list,
output_mode=output_mode,
train_language: Optional[str] = field(
default=None, metadata={"help": "Train language if it is different from the evaluation language."}
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
else:
raise ValueError("No other `output_mode` for XNLI.")
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
parser.add_argument(
"--language",
default=None,
type=str,
required=True,
help="Evaluation language. Also train language if `train_language` is set to None.",
)
parser.add_argument(
"--train_language", default=None, type=str, help="Train language if is different of the evaluation language."
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
parser.add_argument(
"--output_dir",
cache_dir: Optional[str] = field(
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
# Other parameters
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
do_lower_case: Optional[bool] = field(
default=False,
metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
parser.add_argument(
"--cache_dir",
default=None,
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
if data_args.server_ip and data_args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.enable_attach(address=(data_args.server_ip, data_args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(args.local_rank):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set seed
set_seed(args)
# Prepare XNLI task
args.task_name = "xnli"
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name](language=args.language, train_language=args.train_language)
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if model_args.train_language is None:
train_dataset = load_dataset("xnli", model_args.language, split="train")
else:
train_dataset = load_dataset("xnli", model_args.train_language, split="train")
eval_dataset = load_dataset("xnli", model_args.language, split="validation")
# Labels
label_list = train_dataset.features["label"].names
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir,
finetuning_task="xnli",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
args.model_type = config.model_type
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir,
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
do_lower_case=model_args.do_lower_case,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=args.cache_dir,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
def preprocess_function(examples):
# Tokenize the texts
return tokenizer(
examples["premise"],
examples["hypothesis"],
padding=padding,
max_length=data_args.max_seq_length,
truncation=True,
)
train_dataset = train_dataset.map(
preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache
)
eval_dataset = eval_dataset.map(
preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache
)
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# Get the metric function
metric = load_metric("xnli")
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=p.label_ids)
model.to(args.device)
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
data_collator = default_data_collator
elif training_args.fp16:
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
else:
data_collator = None
logger.info("Training/evaluation parameters %s", args)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = AutoModelForSequenceClassification.from_pretrained(args.output_dir)
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
if training_args.do_train:
if last_checkpoint is not None:
model_path = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
model_path = model_args.model_name_or_path
else:
model_path = None
train_result = trainer.train(model_path=model_path)
metrics = train_result.metrics
trainer.save_model() # Saves the tokenizer too for easy upload
output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
if trainer.is_world_process_zero():
with open(output_train_file, "w") as writer:
logger.info("***** Train results *****")
for key, value in sorted(metrics.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
eval_results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
eval_result = trainer.evaluate(eval_dataset=eval_dataset)
output_eval_file = os.path.join(training_args.output_dir, "eval_results_xnli.txt")
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
if trainer.is_world_process_zero():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results xnli *****")
for key, value in sorted(eval_result.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
return results
eval_results.update(eval_result)
return eval_results
if __name__ == "__main__":
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment