• Qbiwan's avatar
    Update run_xnli.py to use Datasets library (#9829) · 8dcfaea0
    Qbiwan authored
    * remove xnli_compute_metrics, add load_dataset, load_metric, set_seed,metric.compute,load_metric
    
    * fix
    
    * fix
    
    * fix
    
    * push
    
    * fix
    
    * everything works
    
    * fix init
    
    * fix
    
    * special treatment for sepconv1d
    
    * style
    
    * 馃檹馃徑
    
    * add doc and cleanup
    
    
    * fix doc
    
    * fix doc again
    
    * fix doc again
    
    * Apply suggestions from code review
    
    * make style
    
    * Proposal that should work
    
    * Remove needless code
    
    * Fix test
    
    * Apply suggestions from code review
    
    * remove xnli_compute_metrics, add load_dataset, load_metric, set_seed,metric.compute,load_metric
    
    * amend README
    
    * removed data_args.task_name and replaced with task_name = "xnli"; use split function to load train and validation dataset separately; remove __post_init__; remove flag --task_name from README.
    
    * removed dict task_to_keys, use str "xnli" instead of variable task_name, change preprocess_function to use examples["premise"], examples["hypothesis"] directly, remove sentence1_key and sentence2_key, change compute_metrics function to cater only to accuracy metric, add condition for train_langauge is None when using dataset.load_dataset()
    
    * removed `torch.distributed.barrier()` and `import torch` as `from_pretrained` is able to do the work; amend README
    8dcfaea0
run_xnli.py 12.7 KB