Unverified Commit 896d7be9 authored by Suraj Patil's avatar Suraj Patil Committed by GitHub
Browse files

fix docstrings (#11221)

parent 823df939
......@@ -554,10 +554,6 @@ BLENDERBOT_INPUTS_DOCSTRING = r"""
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read :func:`modeling_blenderbot._prepare_decoder_inputs`
and modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more
information on the default strategy.
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
......
......@@ -555,10 +555,6 @@ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read
:func:`modeling_blenderbot_small._prepare_decoder_inputs` and modify to your needs. See diagram 1 in `the
paper <https://arxiv.org/abs/1910.13461>`__ for more information on the default strategy.
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
......
......@@ -234,13 +234,20 @@ FSMT_INPUTS_DOCSTRING = r"""
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the input_ids right, following the paper.
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.FSMTTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
FSMT uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
:obj:`past_key_values`).
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default. If you want to change padding behavior, you should read
:func:`modeling_fstm._prepare_fstm_decoder_inputs` and modify. See diagram 1 in the paper for more info on
the default strategy
also be used by default.
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
......
......@@ -589,15 +589,20 @@ M2M_100_INPUTS_DOCSTRING = r"""
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the :obj:`input_ids` to the right, following the paper.
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.M2M100Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
M2M100 uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
:obj:`past_key_values`).
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read :func:`modeling_m2m_100._prepare_decoder_inputs`
and modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more
information on the default strategy.
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`):
Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`:
:obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`,
......
......@@ -567,10 +567,6 @@ MARIAN_INPUTS_DOCSTRING = r"""
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read :func:`modeling_marian._prepare_decoder_inputs` and
modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more
information on the default strategy.
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
......
......@@ -575,9 +575,6 @@ MBART_INPUTS_DOCSTRING = r"""
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the :obj:`input_ids` to the right, following the paper.
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Indices of decoder input sequence tokens in the vocabulary.
......@@ -598,10 +595,6 @@ MBART_INPUTS_DOCSTRING = r"""
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read :func:`modeling_mbart._prepare_decoder_inputs` and
modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more
information on the default strategy.
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
......
......@@ -566,10 +566,6 @@ PEGASUS_INPUTS_DOCSTRING = r"""
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read :func:`modeling_pegasus._prepare_decoder_inputs`
and modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more
information on the default strategy.
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
......
......@@ -597,10 +597,6 @@ PEGASUS_INPUTS_DOCSTRING = r"""
Pegasus uses the :obj:`pad_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
:obj:`past_key_values`).
For translation and summarization training, :obj:`decoder_input_ids` should be provided. If no
:obj:`decoder_input_ids` is provided, the model will create this tensor by shifting the :obj:`input_ids` to
the right for denoising pre-training following the paper.
decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
......
......@@ -91,7 +91,7 @@ PROPHETNET_INPUTS_DOCSTRING = r"""
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See
Indices can be obtained using :class:`~transformers.ProphetNetTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
......@@ -104,10 +104,6 @@ PROPHETNET_INPUTS_DOCSTRING = r"""
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read :func:`modeling_bart._prepare_decoder_inputs` and
modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more
information on the default strategy.
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`):
Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`:
:obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`,
......
......@@ -610,15 +610,20 @@ SPEECH_TO_TEXT_INPUTS_DOCSTRING = r"""
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the :obj:`input_ids` to the right, following the paper.
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.SpeechToTextTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
SpeechToText uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
:obj:`past_key_values`).
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read
:func:`modeling_speech_to_text._prepare_decoder_inputs` and modify to your needs. See diagram 1 in `the
paper <https://arxiv.org/abs/1910.13461>`__ for more information on the default strategy.
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
......
......@@ -1057,7 +1057,7 @@ T5_INPUTS_DOCSTRING = r"""
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.BartTokenizer`. See
Indices can be obtained using :class:`~transformers.T5Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
......@@ -1068,8 +1068,7 @@ T5_INPUTS_DOCSTRING = r"""
:obj:`past_key_values`).
To know more on how to prepare :obj:`decoder_input_ids` for pretraining take a look at `T5 Training
<./t5.html#training>`__. If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset,
:obj:`decoder_input_ids` takes the value of :obj:`input_ids`.
<./t5.html#training>`__.
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
......
......@@ -954,8 +954,7 @@ T5_INPUTS_DOCSTRING = r"""
:obj:`decoder_input_ids` have to be input (see :obj:`past_key_values`).
To know more on how to prepare :obj:`decoder_input_ids` for pretraining take a look at `T5 Training
<./t5.html#training>`__. If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset,
:obj:`decoder_input_ids` takes the value of :obj:`input_ids`.
<./t5.html#training>`__.
attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment