Unverified Commit 87e217d0 authored by Dmitrii Mukhutdinov's avatar Dmitrii Mukhutdinov Committed by GitHub
Browse files

[Whisper] Add `large-v3` version support (#27336)



* Enable large-v3 downloading and update language list

* Fix type annotation

* make fixup

* Export Whisper feature extractor

* Fix error after extractor loading

* Do not use pre-computed mel filters

* Save the full preprocessor properly

* Update docs

* Remove comment
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>

* Add alignment heads consistent with each Whisper version

* Remove alignment heads calculation

* Save fast tokenizer format as well

* Fix slow to fast conversion

* Fix bos/eos/pad token IDs in the model config

* Add decoder_start_token_id to config

---------
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
parent 93f2de85
......@@ -34,13 +34,13 @@ The original code can be found [here](https://github.com/openai/whisper).
- Inference is currently only implemented for short-form i.e. audio is pre-segmented into <=30s segments. Long-form (including timestamps) will be implemented in a future release.
- One can use [`WhisperProcessor`] to prepare audio for the model, and decode the predicted ID's back into text.
- To convert the tokenizer, we recommend using the following:
- To convert the model and the processor, we recommend using the following:
```bash
python src/transformers/models/whisper/convert_openai_to_hf.py --checkpoint_path "" --pytorch_dump_folder_path "Arthur/whisper-3" --convert_tokenizer True --whisper_version 3 --multilingual True
python src/transformers/models/whisper/convert_openai_to_hf.py --checkpoint_path "" --pytorch_dump_folder_path "Arthur/whisper-3" --convert_preprocessor True
```
Here the `whisper_version` will set the number of languages to `100` to account for `cantonese` which was added in `whisper-large-v3`.
The script will automatically determine all necessary parameters from the OpenAI checkpoint. A `tiktoken` library needs to be installed
to perform the conversion of the OpenAI tokenizer to the `tokenizers` version.
## Inference
......
......@@ -33,6 +33,14 @@ Whisper 모델은 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
- 현재 추론은 짧은 형식에만 구현되어 있으며, 오디오는 30초 미만의 세그먼트로 미리 분할되어야 합니다. 타임스탬프를 포함한 긴 형식에 대한 추론은 향후 릴리스에서 구현될 예정입니다.
- [`WhisperProcessor`]를 사용하여 모델에 사용할 오디오를 준비하고, 예측된 ID를 텍스트로 디코딩할 수 있습니다.
- 모델과 프로세서를 변환하려면 다음을 사용하는 것이 좋습니다:
```bash
python src/transformers/models/whisper/convert_openai_to_hf.py --checkpoint_path "" --pytorch_dump_folder_path "Arthur/whisper-3" --convert_preprocessor True
```
스크립트는 OpenAI 체크포인트에서 필요한 모든 매개변수를 자동으로 결정합니다. OpenAI 변환을 수행하려면 `tiktoken` 라이브러리를 설치해야 합니다.
라이브러리를 설치해야 OpenAI 토큰화기를 `tokenizers` 버전으로 변환할 수 있습니다.
이 모델은 [Arthur Zucker](https://huggingface.co/ArthurZ)에 의해 제공되었습니다. 이 모델의 Tensorflow 버전은 [amyeroberts](https://huggingface.co/amyeroberts)에 의해 제공되었습니다.
원본 코드는 [여기](https://github.com/openai/whisper)에서 찾을 수 있습니다.
......
......@@ -21,13 +21,22 @@ import os
import tempfile
import urllib
import warnings
from typing import Any, Optional, Tuple
import torch
from huggingface_hub.utils import insecure_hashlib
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration, WhisperTokenizer
from transformers import (
GenerationConfig,
WhisperConfig,
WhisperFeatureExtractor,
WhisperForConditionalGeneration,
WhisperProcessor,
WhisperTokenizer,
WhisperTokenizerFast,
)
from transformers.models.whisper.tokenization_whisper import LANGUAGES, bytes_to_unicode
from transformers.utils.import_utils import _is_package_available
......@@ -43,14 +52,47 @@ _MODELS = {
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt",
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
}
_TOKENIZERS = {
"multilingual": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/multilingual.tiktoken",
"english": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/gpt2.tiktoken",
}
def _get_generation_config(
is_multilingual: bool,
num_languages: int = 100,
openai_version: Optional[str] = None,
) -> GenerationConfig:
"""
Loads the appropriate generation config from HF repo
"""
if openai_version is not None:
repo = f"openai/whisper-{openai_version}"
elif not is_multilingual:
repo = "openai/whisper-medium.en"
elif num_languages < 100:
repo = "openai/whisper-large-v2"
else:
repo = "openai/whisper-large-v3"
gen_cfg = GenerationConfig.from_pretrained(repo)
if openai_version is None:
gen_cfg.alignment_heads = None
warnings.warn(
"Alignment heads have not been included in the generation config, since they are available "
"only for the original OpenAI checkpoints."
"If you want to use word-level timestamps with a custom version of Whisper,"
"see https://github.com/openai/whisper/blob/main/notebooks/Multilingual_ASR.ipynb"
"for the example of how to produce word-level timestamps manually."
)
return gen_cfg
def remove_ignore_keys_(state_dict):
ignore_keys = ["layers", "blocks"]
for k in ignore_keys:
......@@ -102,7 +144,7 @@ def make_linear_from_emb(emb):
return lin_layer
def _download(url: str, root: str) -> io.BytesIO:
def _download(url: str, root: str) -> Any:
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
......@@ -140,12 +182,17 @@ def _download(url: str, root: str) -> io.BytesIO:
return torch.load(io.BytesIO(model_bytes))
def convert_openai_whisper_to_tfms(checkpoint_path, pytorch_dump_folder_path):
def convert_openai_whisper_to_tfms(
checkpoint_path, pytorch_dump_folder_path
) -> Tuple[WhisperForConditionalGeneration, bool, int]:
if ".pt" not in checkpoint_path:
root = os.path.dirname(pytorch_dump_folder_path) or "."
original_checkpoint = _download(_MODELS[checkpoint_path], root)
openai_version = checkpoint_path
else:
original_checkpoint = torch.load(checkpoint_path, map_location="cpu")
openai_version = None
dimensions = original_checkpoint["dims"]
state_dict = original_checkpoint["model_state_dict"]
proj_out_weights = state_dict["decoder.token_embedding.weight"]
......@@ -154,6 +201,9 @@ def convert_openai_whisper_to_tfms(checkpoint_path, pytorch_dump_folder_path):
tie_embeds = True
ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0]
# a hacky way to properly set up the bos/eos/pad token ids in the model
endoftext_id = 50257 if dimensions["n_vocab"] > 51865 else 50256
config = WhisperConfig(
vocab_size=dimensions["n_vocab"],
encoder_ffn_dim=ffn_dim,
......@@ -166,6 +216,10 @@ def convert_openai_whisper_to_tfms(checkpoint_path, pytorch_dump_folder_path):
decoder_layers=dimensions["n_text_layer"],
decoder_attention_heads=dimensions["n_text_head"],
max_source_positions=dimensions["n_audio_ctx"],
eos_token_id=endoftext_id,
bos_token_id=endoftext_id,
pad_token_id=endoftext_id,
decoder_start_token_id=endoftext_id + 1,
)
model = WhisperForConditionalGeneration(config)
......@@ -184,7 +238,17 @@ def convert_openai_whisper_to_tfms(checkpoint_path, pytorch_dump_folder_path):
else:
model.proj_out.weight.data = proj_out_weights
model.save_pretrained(pytorch_dump_folder_path)
# determine those parameters from a model checkpoint as Whisper repo does
is_multilingual = model.config.vocab_size >= 51865
num_languages = model.config.vocab_size - 51765 - int(is_multilingual)
model.generation_config = _get_generation_config(
is_multilingual,
num_languages,
openai_version,
)
return model, is_multilingual, num_languages
# Adapted from https://github.com/openai/tiktoken/issues/60#issuecomment-1499977960
......@@ -225,7 +289,7 @@ def convert_tiktoken_bpe_to_hf(tiktoken_url: str):
def convert_tiktoken_to_hf(
pytorch_dump_folder_path: str, multilingual: bool = True, num_languages: int = 100, time_precision=0.02
multilingual: bool = True, num_languages: int = 100, time_precision=0.02
) -> WhisperTokenizer:
# requires whisper, unless we use the path to the tiktoken file
tiktoken_tokenizer_path = _TOKENIZERS["multilingual" if multilingual else "english"]
......@@ -260,7 +324,7 @@ def convert_tiktoken_to_hf(
hf_tokenizer.add_tokens(start_of_transcript + language_tokens + control_tokens, special_tokens=True)
hf_tokenizer.add_tokens(timestamp_tokens, special_tokens=False)
hf_tokenizer.save_pretrained(pytorch_dump_folder_path)
return hf_tokenizer
if __name__ == "__main__":
......@@ -269,26 +333,18 @@ if __name__ == "__main__":
parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--convert_tokenizer",
"--convert_preprocessor",
type=bool,
default=False,
help="Whether or not the tokenizer should be converted along with the model.",
)
parser.add_argument(
"--whisper_version",
type=int,
default=2,
help="Version of the whisper release",
)
parser.add_argument(
"--multilingual",
type=bool,
default="store_true",
help="Whether or not the model is multilingual or english only",
help="Whether or not the preprocessor (tokenizer + feature extractor) should be converted along with the model.",
)
args = parser.parse_args()
if args.convert_tokenizer:
model, is_multilingual, num_languages = convert_openai_whisper_to_tfms(
args.checkpoint_path, args.pytorch_dump_folder_path
)
if args.convert_preprocessor:
try:
if not _is_package_available("tiktoken"):
raise """`tiktoken` is not installed, use `pip install tiktoken` to convert the tokenizer"""
......@@ -297,9 +353,16 @@ if __name__ == "__main__":
else:
from tiktoken.load import load_tiktoken_bpe
NUM_LANGUAGES_PER_RELEASE = {1: 99, 2: 99, 3: 100}
convert_tiktoken_to_hf(
args.pytorch_dump_folder_path, args.multilingual, NUM_LANGUAGES_PER_RELEASE[args.whisper_version]
tokenizer = convert_tiktoken_to_hf(is_multilingual, num_languages)
feature_extractor = WhisperFeatureExtractor(
feature_size=model.config.num_mel_bins,
# the rest of default parameters are the same as hardcoded in openai/whisper
)
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(args.pytorch_dump_folder_path)
# save fast tokenizer as well
fast_tokenizer = WhisperTokenizerFast.from_pretrained(args.pytorch_dump_folder_path)
fast_tokenizer.save_pretrained(args.pytorch_dump_folder_path, legacy_format=False)
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
model.save_pretrained(args.pytorch_dump_folder_path)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment