Unverified Commit 87c9d8a1 authored by David Reguera's avatar David Reguera Committed by GitHub
Browse files

Add type hints to Blip2QFormer, BigBirdForQA and ConditionalDetr family models (#25488)

* Add missing type hints to `BigBirdForQuestionAnswering`

* Add type hints to `Blip2QFormerModel`

* Add type hints for `ConditionalDetr` family
parent b1b0fc4f
...@@ -3012,9 +3012,9 @@ class BigBirdForQuestionAnswering(BigBirdPreTrainedModel): ...@@ -3012,9 +3012,9 @@ class BigBirdForQuestionAnswering(BigBirdPreTrainedModel):
@replace_return_docstrings(output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None,
question_lengths=None, question_lengths: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None,
......
...@@ -1080,17 +1080,17 @@ class Blip2QFormerModel(Blip2PreTrainedModel): ...@@ -1080,17 +1080,17 @@ class Blip2QFormerModel(Blip2PreTrainedModel):
def forward( def forward(
self, self,
query_embeds, query_embeds: torch.FloatTensor,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states=None, encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask=None, encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r""" r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
import math import math
from dataclasses import dataclass from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple from typing import Dict, List, Optional, Tuple, Union
import torch import torch
from torch import Tensor, nn from torch import Tensor, nn
...@@ -1525,16 +1525,16 @@ class ConditionalDetrModel(ConditionalDetrPreTrainedModel): ...@@ -1525,16 +1525,16 @@ class ConditionalDetrModel(ConditionalDetrPreTrainedModel):
@replace_return_docstrings(output_type=ConditionalDetrModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=ConditionalDetrModelOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[torch.FloatTensor, ConditionalDetrModelOutput]:
r""" r"""
Returns: Returns:
...@@ -1686,17 +1686,17 @@ class ConditionalDetrForObjectDetection(ConditionalDetrPreTrainedModel): ...@@ -1686,17 +1686,17 @@ class ConditionalDetrForObjectDetection(ConditionalDetrPreTrainedModel):
@replace_return_docstrings(output_type=ConditionalDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=ConditionalDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[List[dict]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], ConditionalDetrObjectDetectionOutput]:
r""" r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*): labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
...@@ -1870,17 +1870,17 @@ class ConditionalDetrForSegmentation(ConditionalDetrPreTrainedModel): ...@@ -1870,17 +1870,17 @@ class ConditionalDetrForSegmentation(ConditionalDetrPreTrainedModel):
@replace_return_docstrings(output_type=ConditionalDetrSegmentationOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=ConditionalDetrSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
pixel_values, pixel_values: torch.FloatTensor,
pixel_mask=None, pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs=None, encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[List[dict]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple[torch.FloatTensor], ConditionalDetrSegmentationOutput]:
r""" r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*): labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment