Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
86d0b26d
Unverified
Commit
86d0b26d
authored
Aug 17, 2022
by
Jingya HUANG
Committed by
GitHub
Aug 17, 2022
Browse files
Fix matmul inputs dtype (#18585)
parent
c99e9846
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
16 additions
and
13 deletions
+16
-13
src/transformers/models/deberta/modeling_deberta.py
src/transformers/models/deberta/modeling_deberta.py
+6
-7
src/transformers/models/deberta_v2/modeling_deberta_v2.py
src/transformers/models/deberta_v2/modeling_deberta_v2.py
+5
-3
src/transformers/models/sew_d/modeling_sew_d.py
src/transformers/models/sew_d/modeling_sew_d.py
+5
-3
No files found.
src/transformers/models/deberta/modeling_deberta.py
View file @
86d0b26d
...
...
@@ -14,7 +14,6 @@
# limitations under the License.
""" PyTorch DeBERTa model."""
import
math
from
collections.abc
import
Sequence
from
typing
import
Optional
,
Tuple
,
Union
...
...
@@ -640,8 +639,8 @@ class DisentangledSelfAttention(nn.Module):
qkvw
=
[
torch
.
cat
([
ws
[
i
*
3
+
k
]
for
i
in
range
(
self
.
num_attention_heads
)],
dim
=
0
)
for
k
in
range
(
3
)]
qkvb
=
[
None
]
*
3
q
=
linear
(
qkvw
[
0
],
qkvb
[
0
],
query_states
)
k
,
v
=
[
linear
(
qkvw
[
i
],
qkvb
[
i
],
hidden_states
)
for
i
in
range
(
1
,
3
)]
q
=
linear
(
qkvw
[
0
],
qkvb
[
0
],
torch
.
tensor
(
query_states
,
dtype
=
qkvw
[
0
].
dtype
)
)
k
,
v
=
[
linear
(
qkvw
[
i
],
qkvb
[
i
],
torch
.
tensor
(
hidden_states
,
dtype
=
qkvw
[
i
].
dtype
)
)
for
i
in
range
(
1
,
3
)]
query_layer
,
key_layer
,
value_layer
=
[
self
.
transpose_for_scores
(
x
)
for
x
in
[
q
,
k
,
v
]]
query_layer
=
query_layer
+
self
.
transpose_for_scores
(
self
.
q_bias
[
None
,
None
,
:])
...
...
@@ -650,8 +649,8 @@ class DisentangledSelfAttention(nn.Module):
rel_att
=
None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor
=
1
+
len
(
self
.
pos_att_type
)
scale
=
mat
h
.
sqrt
(
query_layer
.
size
(
-
1
)
*
scale_factor
)
query_layer
=
query_layer
/
scale
scale
=
torc
h
.
sqrt
(
torch
.
tensor
(
query_layer
.
size
(
-
1
)
,
dtype
=
torch
.
float
)
*
scale_factor
)
query_layer
=
query_layer
/
torch
.
tensor
(
scale
,
dtype
=
query_layer
.
dtype
)
attention_scores
=
torch
.
matmul
(
query_layer
,
key_layer
.
transpose
(
-
1
,
-
2
))
if
self
.
relative_attention
:
rel_embeddings
=
self
.
pos_dropout
(
rel_embeddings
)
...
...
@@ -711,13 +710,13 @@ class DisentangledSelfAttention(nn.Module):
if
"p2c"
in
self
.
pos_att_type
:
pos_query_layer
=
self
.
pos_q_proj
(
rel_embeddings
)
pos_query_layer
=
self
.
transpose_for_scores
(
pos_query_layer
)
pos_query_layer
/=
mat
h
.
sqrt
(
pos_query_layer
.
size
(
-
1
)
*
scale_factor
)
pos_query_layer
/=
torc
h
.
sqrt
(
torch
.
tensor
(
pos_query_layer
.
size
(
-
1
)
,
dtype
=
torch
.
float
)
*
scale_factor
)
if
query_layer
.
size
(
-
2
)
!=
key_layer
.
size
(
-
2
):
r_pos
=
build_relative_position
(
key_layer
.
size
(
-
2
),
key_layer
.
size
(
-
2
),
query_layer
.
device
)
else
:
r_pos
=
relative_pos
p2c_pos
=
torch
.
clamp
(
-
r_pos
+
att_span
,
0
,
att_span
*
2
-
1
)
p2c_att
=
torch
.
matmul
(
key_layer
,
pos_query_layer
.
transpose
(
-
1
,
-
2
))
p2c_att
=
torch
.
matmul
(
key_layer
,
torch
.
tensor
(
pos_query_layer
.
transpose
(
-
1
,
-
2
)
,
dtype
=
key_layer
.
dtype
)
)
p2c_att
=
torch
.
gather
(
p2c_att
,
dim
=-
1
,
index
=
p2c_dynamic_expand
(
p2c_pos
,
query_layer
,
key_layer
)
).
transpose
(
-
1
,
-
2
)
...
...
src/transformers/models/deberta_v2/modeling_deberta_v2.py
View file @
86d0b26d
...
...
@@ -717,7 +717,9 @@ class DisentangledSelfAttention(nn.Module):
if
"p2c"
in
self
.
pos_att_type
:
scale_factor
+=
1
scale
=
torch
.
sqrt
(
torch
.
tensor
(
query_layer
.
size
(
-
1
),
dtype
=
torch
.
float
)
*
scale_factor
)
attention_scores
=
torch
.
bmm
(
query_layer
,
key_layer
.
transpose
(
-
1
,
-
2
))
/
scale
attention_scores
=
torch
.
bmm
(
query_layer
,
key_layer
.
transpose
(
-
1
,
-
2
))
/
torch
.
tensor
(
scale
,
dtype
=
query_layer
.
dtype
)
if
self
.
relative_attention
:
rel_embeddings
=
self
.
pos_dropout
(
rel_embeddings
)
rel_att
=
self
.
disentangled_attention_bias
(
...
...
@@ -799,7 +801,7 @@ class DisentangledSelfAttention(nn.Module):
dim
=-
1
,
index
=
c2p_pos
.
squeeze
(
0
).
expand
([
query_layer
.
size
(
0
),
query_layer
.
size
(
1
),
relative_pos
.
size
(
-
1
)]),
)
score
+=
c2p_att
/
scale
score
+=
c2p_att
/
torch
.
tensor
(
scale
,
dtype
=
c2p_att
.
dtype
)
# position->content
if
"p2c"
in
self
.
pos_att_type
:
...
...
@@ -822,7 +824,7 @@ class DisentangledSelfAttention(nn.Module):
dim
=-
1
,
index
=
p2c_pos
.
squeeze
(
0
).
expand
([
query_layer
.
size
(
0
),
key_layer
.
size
(
-
2
),
key_layer
.
size
(
-
2
)]),
).
transpose
(
-
1
,
-
2
)
score
+=
p2c_att
/
scale
score
+=
p2c_att
/
torch
.
tensor
(
scale
,
dtype
=
p2c_att
.
dtype
)
return
score
...
...
src/transformers/models/sew_d/modeling_sew_d.py
View file @
86d0b26d
...
...
@@ -791,7 +791,9 @@ class DisentangledSelfAttention(nn.Module):
if
"p2c"
in
self
.
pos_att_type
:
scale_factor
+=
1
scale
=
torch
.
sqrt
(
torch
.
tensor
(
query_layer
.
size
(
-
1
),
dtype
=
torch
.
float
)
*
scale_factor
)
attention_scores
=
torch
.
bmm
(
query_layer
,
key_layer
.
transpose
(
-
1
,
-
2
))
/
scale
attention_scores
=
torch
.
bmm
(
query_layer
,
key_layer
.
transpose
(
-
1
,
-
2
))
/
torch
.
tensor
(
scale
,
dtype
=
query_layer
.
dtype
)
if
self
.
relative_attention
:
rel_embeddings
=
self
.
pos_dropout
(
rel_embeddings
)
rel_att
=
self
.
disentangled_attention_bias
(
...
...
@@ -873,7 +875,7 @@ class DisentangledSelfAttention(nn.Module):
dim
=-
1
,
index
=
c2p_pos
.
squeeze
(
0
).
expand
([
query_layer
.
size
(
0
),
query_layer
.
size
(
1
),
relative_pos
.
size
(
-
1
)]),
)
score
+=
c2p_att
/
scale
score
+=
c2p_att
/
torch
.
tensor
(
scale
,
dtype
=
c2p_att
.
dtype
)
# position->content
if
"p2c"
in
self
.
pos_att_type
:
...
...
@@ -896,7 +898,7 @@ class DisentangledSelfAttention(nn.Module):
dim
=-
1
,
index
=
p2c_pos
.
squeeze
(
0
).
expand
([
query_layer
.
size
(
0
),
key_layer
.
size
(
-
2
),
key_layer
.
size
(
-
2
)]),
).
transpose
(
-
1
,
-
2
)
score
+=
p2c_att
/
scale
score
+=
p2c_att
/
torch
.
tensor
(
scale
,
dtype
=
p2c_att
.
dtype
)
return
score
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment