"ppocr/git@developer.sourcefind.cn:wangsen/paddle_dbnet.git" did not exist on "b9d5a3e756c5c4fd7e3c99f173b92de7e942949c"
Unverified Commit 867f3950 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Rename master to main for notebooks links and leftovers (#16397)

parent 7e749047
......@@ -7,7 +7,7 @@ RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=master
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
......
......@@ -7,7 +7,7 @@ RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=master
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[testing,deepspeed]
......
......@@ -7,7 +7,7 @@ RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=master
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing]
......
FROM google/cloud-sdk:slim
# Build args.
ARG GITHUB_REF=refs/heads/master
ARG GITHUB_REF=refs/heads/main
# TODO: This Dockerfile installs pytorch/xla 3.6 wheels. There are also 3.7
# wheels available; see below.
......
......@@ -7,7 +7,7 @@ RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=master
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
......
......@@ -23,7 +23,7 @@ and memory complexity of Transformer models.
Let's take a look at how 🤗 Transformers models can be benchmarked, best practices, and already available benchmarks.
A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/master/examples/benchmark.ipynb).
A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/main/examples/benchmark.ipynb).
## How to benchmark 🤗 Transformers models
......
......@@ -43,8 +43,8 @@ whether a review is positive or negative.
<Tip>
For a more in-depth example of how to fine-tune a model for text classification, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb).
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
</Tip>
......@@ -228,8 +228,8 @@ such as a person, location, or organization. In this example, learn how to fine-
<Tip>
For a more in-depth example of how to fine-tune a model for token classification, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb).
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
</Tip>
......@@ -472,8 +472,8 @@ given a question. In this example, learn how to fine-tune a model on the [SQuAD]
<Tip>
For a more in-depth example of how to fine-tune a model for question answering, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb).
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
</Tip>
......
......@@ -38,7 +38,7 @@ This model was contributed by [moussakam](https://huggingface.co/moussakam). The
### Examples
- BARThez can be fine-tuned on sequence-to-sequence tasks in a similar way as BART, check:
[examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization/README.md).
[examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md).
## BarthezTokenizer
......
......@@ -142,6 +142,6 @@ At this point, only three steps remain:
<Tip>
For a more in-depth example of how to fine-tune a model for audio classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/audio_classification.ipynb).
For a more in-depth example of how to fine-tune a model for audio classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb).
</Tip>
\ No newline at end of file
......@@ -169,6 +169,6 @@ At this point, only three steps remain:
<Tip>
For a more in-depth example of how to fine-tune a model for image classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/image_classification.ipynb).
For a more in-depth example of how to fine-tune a model for image classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
</Tip>
\ No newline at end of file
......@@ -412,7 +412,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
<Tip>
For a more in-depth example of how to fine-tune a model for causal language modeling, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling-tf.ipynb).
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
</Tip>
\ No newline at end of file
......@@ -267,7 +267,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
<Tip>
For a more in-depth example of how to fine-tune a model for question answering, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb).
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
</Tip>
\ No newline at end of file
......@@ -208,7 +208,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
<Tip>
For a more in-depth example of how to fine-tune a model for text classification, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb).
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
</Tip>
\ No newline at end of file
......@@ -217,7 +217,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
<Tip>
For a more in-depth example of how to fine-tune a model for summarization, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization-tf.ipynb).
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb).
</Tip>
\ No newline at end of file
......@@ -266,7 +266,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
<Tip>
For a more in-depth example of how to fine-tune a model for token classification, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb).
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
</Tip>
\ No newline at end of file
......@@ -219,7 +219,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
<Tip>
For a more in-depth example of how to fine-tune a model for translation, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation-tf.ipynb).
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
</Tip>
\ No newline at end of file
......@@ -23,21 +23,21 @@ There are 2 test suites in the repository:
## How transformers are tested
1. Once a PR is submitted it gets tested with 9 CircleCi jobs. Every new commit to that PR gets retested. These jobs
are defined in this [config file](https://github.com/huggingface/transformers-doc2mdx/tree/master/.circleci/config.yml), so that if needed you can reproduce the same
are defined in this [config file](https://github.com/huggingface/transformers/tree/main/.circleci/config.yml), so that if needed you can reproduce the same
environment on your machine.
These CI jobs don't run `@slow` tests.
2. There are 3 jobs run by [github actions](https://github.com/huggingface/transformers/actions):
- [torch hub integration](https://github.com/huggingface/transformers-doc2mdx/tree/master/.github/workflows/github-torch-hub.yml): checks whether torch hub
- [torch hub integration](https://github.com/huggingface/transformers/tree/main/.github/workflows/github-torch-hub.yml): checks whether torch hub
integration works.
- [self-hosted (push)](https://github.com/huggingface/transformers-doc2mdx/tree/master/.github/workflows/self-push.yml): runs fast tests on GPU only on commits on
- [self-hosted (push)](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-push.yml): runs fast tests on GPU only on commits on
`main`. It only runs if a commit on `main` has updated the code in one of the following folders: `src`,
`tests`, `.github` (to prevent running on added model cards, notebooks, etc.)
- [self-hosted runner](https://github.com/huggingface/transformers-doc2mdx/tree/master/.github/workflows/self-scheduled.yml): runs normal and slow tests on GPU in
- [self-hosted runner](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-scheduled.yml): runs normal and slow tests on GPU in
`tests` and `examples`:
```bash
......@@ -473,8 +473,8 @@ spawns a normal process that then spawns off multiple workers and manages the IO
Here are some tests that use it:
- [test_trainer_distributed.py](https://github.com/huggingface/transformers-doc2mdx/tree/master/tests/test_trainer_distributed.py)
- [test_deepspeed.py](https://github.com/huggingface/transformers-doc2mdx/tree/master/tests/deepspeed/test_deepspeed.py)
- [test_trainer_distributed.py](https://github.com/huggingface/transformers/tree/main/tests/test_trainer_distributed.py)
- [test_deepspeed.py](https://github.com/huggingface/transformers/tree/main/tests/deepspeed/test_deepspeed.py)
To jump right into the execution point, search for the `execute_subprocess_async` call in those tests.
......@@ -930,7 +930,7 @@ slow models to do qualitative testing. To see the use of these simply look for *
grep tiny tests examples
```
Here is a an example of a [script](https://github.com/huggingface/transformers-doc2mdx/tree/master/scripts/fsmt/fsmt-make-tiny-model.py) that created the tiny model
Here is a an example of a [script](https://github.com/huggingface/transformers/tree/main/scripts/fsmt/fsmt-make-tiny-model.py) that created the tiny model
[stas/tiny-wmt19-en-de](https://huggingface.co/stas/tiny-wmt19-en-de). You can easily adjust it to your specific
model's architecture.
......
......@@ -26,9 +26,9 @@ The following table lists all of our examples on how to use 🤗 Transformers wi
| Task | Example model | Example dataset | 🤗 Datasets | Colab
|---|---|---|:---:|:---:|
| [**`causal-language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling) | GPT2 | OSCAR | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/causal_language_modeling_flax.ipynb)
| [**`masked-language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling) | RoBERTa | OSCAR | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/masked_language_modeling_flax.ipynb)
| [**`text-classification`**](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) | BERT | GLUE | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification_flax.ipynb)
| [**`causal-language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling) | GPT2 | OSCAR | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb)
| [**`masked-language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling) | RoBERTa | OSCAR | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb)
| [**`text-classification`**](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) | BERT | GLUE | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb)
## Intro: JAX and Flax
......
......@@ -123,7 +123,7 @@ This should take less than 18 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg).
For a step-by-step walkthrough of how to do masked language modeling in Flax, please have a
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/masked_language_modeling_flax.ipynb) google colab.
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb) google colab.
## Causal language modeling
......@@ -224,7 +224,7 @@ This should take less than ~21 hours.
Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/2zEhLwJ0Qp2FAkI3WVH9qA).
For a step-by-step walkthrough of how to do causal language modeling in Flax, please have a
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/causal_language_modeling_flax.ipynb) google colab.
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb) google colab.
## T5-like span-masked language modeling
......
......@@ -32,18 +32,18 @@ Coming soon!
| Task | Example datasets | Trainer support | 🤗 Accelerate | 🤗 Datasets | Colab
|---|---|:---:|:---:|:---:|:---:|
| [**`language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling) | WikiText-2 | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)
| [**`multiple-choice`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) | SWAG | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multiple_choice.ipynb)
| [**`question-answering`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) | SQuAD | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)
| [**`summarization`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) | XSum | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization.ipynb)
| [**`text-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) | GLUE | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)
| [**`text-generation`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation) | - | n/a | - | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/02_how_to_generate.ipynb)
| [**`token-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) | CoNLL NER | ✅ |✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)
| [**`translation`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) | WMT | ✅ | ✅ |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation.ipynb)
| [**`speech-recognition`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) | TIMIT | ✅ | - |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/speech_recognition.ipynb)
| [**`multi-lingual speech-recognition`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) | Common Voice | ✅ | - |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multi_lingual_speech_recognition.ipynb)
| [**`audio-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification) | SUPERB KS | ✅ | - |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/audio_classification.ipynb)
| [**`image-classification`**](https://github.com/huggingface/notebooks/blob/master/examples/image_classification.ipynb) | CIFAR-10 | ✅ | - |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/image_classification.ipynb)
| [**`language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling) | WikiText-2 | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
| [**`multiple-choice`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) | SWAG | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)
| [**`question-answering`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) | SQuAD | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)
| [**`summarization`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) | XSum | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)
| [**`text-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) | GLUE | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)
| [**`text-generation`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation) | - | n/a | - | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)
| [**`token-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) | CoNLL NER | ✅ |✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
| [**`translation`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) | WMT | ✅ | ✅ |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
| [**`speech-recognition`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) | TIMIT | ✅ | - |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)
| [**`multi-lingual speech-recognition`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) | Common Voice | ✅ | - |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)
| [**`audio-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification) | SUPERB KS | ✅ | - |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)
| [**`image-classification`**](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | CIFAR-10 | ✅ | - |✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)
## Running quick tests
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment