"docs/vscode:/vscode.git/clone" did not exist on "a27195b1de89271be014af149462a647f120e1bd"
Unverified Commit 8406fa6d authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

Add TFSpeech2Text (#15113)

* Add wrapper classes

* convert inner layers to tf

* Add TF Encoder and Decoder layers

* TFSpeech2Text models

* Loadable model

* TF model with same outputs as PT model

* test skeleton

* correct tests and run the fixup

* correct attention expansion

* TFSpeech2Text pask_key_values with TF format
parent 6a5472a8
......@@ -227,7 +227,7 @@ Flax), PyTorch, and/or TensorFlow.
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ❌ |
| Speech2Text | ✅ | ❌ | ✅ | | ❌ |
| Speech2Text | ✅ | ❌ | ✅ | | ❌ |
| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ |
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
......
......@@ -202,6 +202,10 @@ Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its
[[autodoc]] TFAutoModelForVision2Seq
## TFAutoModelForSpeechSeq2Seq
[[autodoc]] TFAutoModelForSpeechSeq2Seq
## FlaxAutoModel
[[autodoc]] FlaxAutoModel
......
......@@ -144,3 +144,13 @@ See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look
[[autodoc]] Speech2TextForConditionalGeneration
- forward
## TFSpeech2TextModel
[[autodoc]] TFSpeech2TextModel
- call
## TFSpeech2TextForConditionalGeneration
[[autodoc]] TFSpeech2TextForConditionalGeneration
- call
......@@ -1621,6 +1621,7 @@ if is_tf_available():
"TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
"TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_VISION_2_SEQ_MAPPING",
......@@ -1635,6 +1636,7 @@ if is_tf_available():
"TFAutoModelForQuestionAnswering",
"TFAutoModelForSeq2SeqLM",
"TFAutoModelForSequenceClassification",
"TFAutoModelForSpeechSeq2Seq",
"TFAutoModelForTableQuestionAnswering",
"TFAutoModelForTokenClassification",
"TFAutoModelForVision2Seq",
......@@ -1946,6 +1948,14 @@ if is_tf_available():
"TFRoFormerPreTrainedModel",
]
)
_import_structure["models.speech_to_text"].extend(
[
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSpeech2TextForConditionalGeneration",
"TFSpeech2TextModel",
"TFSpeech2TextPreTrainedModel",
]
)
_import_structure["models.t5"].extend(
[
"TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST",
......@@ -3588,6 +3598,7 @@ if TYPE_CHECKING:
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_VISION_2_SEQ_MAPPING,
......@@ -3602,6 +3613,7 @@ if TYPE_CHECKING:
TFAutoModelForQuestionAnswering,
TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForSpeechSeq2Seq,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelForVision2Seq,
......@@ -3850,6 +3862,12 @@ if TYPE_CHECKING:
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
from .models.speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeech2TextForConditionalGeneration,
TFSpeech2TextModel,
TFSpeech2TextPreTrainedModel,
)
from .models.t5 import (
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST,
TFT5EncoderModel,
......
......@@ -394,9 +394,12 @@ class TFGenerationMixin:
Parameters:
input_ids (`tf.Tensor` of `dtype=tf.int32` and shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `None` the method initializes it with
`bos_token_id` and a batch size of 1.
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, `(batch_size, sequence_length,
feature_dim)` or `(batch_size, num_channels, height, width)`, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
max_length (`int`, *optional*, defaults to 20):
The maximum length of the sequence to be generated.
min_length (`int`, *optional*, defaults to 10):
......@@ -657,11 +660,12 @@ class TFGenerationMixin:
), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences"
# create attention mask if necessary
# TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140
if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids.numpy()):
attention_mask = tf.cast(tf.math.not_equal(input_ids, pad_token_id), dtype=tf.int32)
elif attention_mask is None:
attention_mask = tf.ones_like(input_ids)
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.call).parameters.keys())
if accepts_attention_mask:
if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids.numpy()):
attention_mask = tf.cast(tf.math.not_equal(input_ids, pad_token_id), dtype=tf.int32)
elif attention_mask is None:
attention_mask = tf.ones(shape_list(input_ids)[:2], dtype=tf.int32)
if pad_token_id is None and eos_token_id is not None:
logger.warning(f"Setting `pad_token_id` to {eos_token_id} (first `eos_token_id`) to generate sequence")
......@@ -697,16 +701,12 @@ class TFGenerationMixin:
encoder = self.get_encoder()
encoder_kwargs = {
"attention_mask": attention_mask,
"output_attentions": output_attentions,
"output_hidden_states": output_hidden_states,
"return_dict": return_dict_in_generate,
}
# vision models don't use `attention_mask`.
signature = dict(inspect.signature(encoder.call).parameters)
if "attention_mask" not in signature:
encoder_kwargs.pop("attention_mask")
if accepts_attention_mask:
encoder_kwargs["attention_mask"] = attention_mask
encoder_outputs = encoder(input_ids, **encoder_kwargs)
if return_dict_in_generate:
......@@ -715,23 +715,15 @@ class TFGenerationMixin:
if output_hidden_states:
model_kwargs["encoder_hidden_states"] = encoder_outputs.hidden_states
# The condition `len(shape_list(input_ids)) == 2` is to make this block treats only text inputs.
# (vision inputs might occur when the model is an encoder-decoder model)
# Expand input ids if num_beams > 1 or num_return_sequences > 1
if len(shape_list(input_ids)) == 2 and (num_return_sequences > 1 or num_beams > 1):
input_ids_len = shape_list(input_ids)[-1]
input_ids = tf.broadcast_to(
tf.expand_dims(input_ids, 1), (batch_size, effective_batch_mult * num_beams, input_ids_len)
)
attention_mask = tf.broadcast_to(
tf.expand_dims(attention_mask, 1), (batch_size, effective_batch_mult * num_beams, input_ids_len)
)
input_ids = tf.reshape(
input_ids, (effective_batch_size * num_beams, input_ids_len)
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
attention_mask = tf.reshape(
attention_mask, (effective_batch_size * num_beams, input_ids_len)
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
expanded_batch_idxs = tf.reshape(
tf.repeat(tf.expand_dims(tf.range(batch_size), -1), repeats=num_beams * effective_batch_mult, axis=1),
shape=(-1,),
)
# prepares text-based inputs
if len(shape_list(input_ids)) == 2:
input_ids = tf.gather(input_ids, expanded_batch_idxs, axis=0)
if accepts_attention_mask:
attention_mask = tf.gather(attention_mask, expanded_batch_idxs, axis=0)
if self.config.is_encoder_decoder:
......@@ -749,11 +741,6 @@ class TFGenerationMixin:
batch_size == encoder_outputs[0].shape[0]
), f"expected encoder_outputs[0] to have 1st dimension bs={batch_size}, got {encoder_outputs[0].shape[0]} "
# expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1)
expanded_batch_idxs = tf.reshape(
tf.repeat(tf.expand_dims(tf.range(batch_size), -1), repeats=num_beams * effective_batch_mult, axis=1),
shape=(-1,),
)
# expand encoder_outputs
encoder_outputs = (tf.gather(encoder_outputs[0], expanded_batch_idxs, axis=0),)
else:
......@@ -851,7 +838,8 @@ class TFGenerationMixin:
unfinished_sents = tf.ones_like(input_ids[:, 0])
sent_lengths = tf.ones_like(input_ids[:, 0]) * max_length
past = encoder_outputs # defined for encoder-decoder models, None for decoder-only models
# defined for encoder-decoder models, None for decoder-only models
past = encoder_outputs
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and kwargs["output_scores"]) else None
......@@ -871,7 +859,11 @@ class TFGenerationMixin:
while cur_len < max_length:
model_inputs = self.prepare_inputs_for_generation(
input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **kwargs
input_ids,
past=past,
attention_mask=attention_mask,
use_cache=use_cache,
**kwargs,
)
outputs = self(
**model_inputs,
......@@ -1132,7 +1124,11 @@ class TFGenerationMixin:
while cur_len < max_length:
model_inputs = self.prepare_inputs_for_generation(
input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **kwargs
input_ids,
past=past,
attention_mask=attention_mask,
use_cache=use_cache,
**kwargs,
)
outputs = self(
**model_inputs,
......
......@@ -35,6 +35,7 @@ class TransposeType(ExplicitEnum):
NO = "no"
SIMPLE = "simple"
CONV1D = "conv1d"
CONV2D = "conv2d"
......@@ -68,8 +69,9 @@ def convert_tf_weight_name_to_pt_weight_name(tf_name, start_prefix_to_remove="",
# When should we transpose the weights
if tf_name[-1] == "kernel" and tf_weight_shape is not None and tf_weight_shape.rank == 4:
# A simple heuristic to detect conv layer using weight array shape
transpose = TransposeType.CONV2D
elif tf_name[-1] == "kernel" and tf_weight_shape is not None and tf_weight_shape.rank == 3:
transpose = TransposeType.CONV1D
elif bool(
tf_name[-1] in ["kernel", "pointwise_kernel", "depthwise_kernel"]
or "emb_projs" in tf_name
......@@ -194,7 +196,6 @@ def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, a
# authorized missing keys don't have to be loaded
if any(re.search(pat, name) is not None for pat in tf_model._keys_to_ignore_on_load_missing):
continue
raise AttributeError(f"{name} not found in PyTorch model")
array = pt_state_dict[name].numpy()
......@@ -204,6 +205,11 @@ def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, a
# PT: (num_out_channel, num_in_channel, kernel[0], kernel[1])
# -> TF: (kernel[0], kernel[1], num_in_channel, num_out_channel)
array = numpy.transpose(array, axes=(2, 3, 1, 0))
elif transpose is TransposeType.CONV1D:
# Conv1D weight:
# PT: (num_out_channel, num_in_channel, kernel)
# -> TF: (kernel, num_in_channel, num_out_channel)
array = numpy.transpose(array, axes=(2, 1, 0))
elif transpose is TransposeType.SIMPLE:
array = numpy.transpose(array)
......@@ -355,7 +361,6 @@ def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=F
all_tf_weights = set(list(tf_weights_map.keys()))
loaded_pt_weights_data_ptr = {}
missing_keys_pt = []
for pt_weight_name, pt_weight in current_pt_params_dict.items():
# Handle PyTorch shared weight ()not duplicated in TF 2.0
if pt_weight.data_ptr() in loaded_pt_weights_data_ptr:
......@@ -377,6 +382,11 @@ def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=F
# TF: (kernel[0], kernel[1], num_in_channel, num_out_channel)
# -> PT: (num_out_channel, num_in_channel, kernel[0], kernel[1])
array = numpy.transpose(array, axes=(3, 2, 0, 1))
elif transpose is TransposeType.CONV1D:
# Conv1D weight:
# TF: (kernel, num_in_channel, num_out_channel)
# -> PT: (num_out_channel, num_in_channel, kernel)
array = numpy.transpose(array, axes=(2, 1, 0))
elif transpose is TransposeType.SIMPLE:
array = numpy.transpose(array)
......
......@@ -87,6 +87,7 @@ if is_tf_available():
"TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
"TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_VISION_2_SEQ_MAPPING",
......@@ -101,6 +102,7 @@ if is_tf_available():
"TFAutoModelForQuestionAnswering",
"TFAutoModelForSeq2SeqLM",
"TFAutoModelForSequenceClassification",
"TFAutoModelForSpeechSeq2Seq",
"TFAutoModelForTableQuestionAnswering",
"TFAutoModelForTokenClassification",
"TFAutoModelForVision2Seq",
......@@ -201,6 +203,7 @@ if TYPE_CHECKING:
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_VISION_2_SEQ_MAPPING,
......@@ -215,6 +218,7 @@ if TYPE_CHECKING:
TFAutoModelForQuestionAnswering,
TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForSpeechSeq2Seq,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelForVision2Seq,
......
......@@ -801,7 +801,7 @@ class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
AutoModelForSpeechSeq2Seq = auto_class_update(
AutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeing"
AutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeling"
)
......
......@@ -29,6 +29,7 @@ logger = logging.get_logger(__name__)
TF_MODEL_MAPPING_NAMES = OrderedDict(
[
# Base model mapping
("speech_to_text", "TFSpeech2TextModel"),
("clip", "TFCLIPModel"),
("deberta-v2", "TFDebertaV2Model"),
("deberta", "TFDebertaModel"),
......@@ -103,6 +104,7 @@ TF_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
[
# Model with LM heads mapping
("speech_to_text", "TFSpeech2TextForConditionalGeneration"),
("rembert", "TFRemBertForMaskedLM"),
("roformer", "TFRoFormerForMaskedLM"),
("convbert", "TFConvBertForMaskedLM"),
......@@ -204,6 +206,12 @@ TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
]
)
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("speech_to_text", "TFSpeech2TextForConditionalGeneration"),
]
)
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Sequence Classification mapping
......@@ -340,6 +348,9 @@ TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = _LazyAutoMapping(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
......@@ -468,6 +479,15 @@ TFAutoModelForNextSentencePrediction = auto_class_update(
)
class TFAutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
TFAutoModelForSpeechSeq2Seq = auto_class_update(
TFAutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeling"
)
class TFAutoModelWithLMHead(_TFAutoModelWithLMHead):
@classmethod
def from_config(cls, config):
......
......@@ -147,7 +147,11 @@ class TFBartAttention(tf.keras.layers.Layer):
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
......@@ -296,11 +300,11 @@ class TFBartEncoderLayer(tf.keras.layers.Layer):
def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False):
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states, self_attn_weights, _ = self.self_attn(
......@@ -372,17 +376,17 @@ class TFBartDecoderLayer(tf.keras.layers.Layer):
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(decoder_attention_heads,)*
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
*(decoder_attention_heads,)*
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......
......@@ -150,7 +150,11 @@ class TFBlenderbotAttention(tf.keras.layers.Layer):
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
......
......@@ -149,7 +149,11 @@ class TFBlenderbotSmallAttention(tf.keras.layers.Layer):
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
......@@ -299,11 +303,11 @@ class TFBlenderbotSmallEncoderLayer(tf.keras.layers.Layer):
def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False):
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states, self_attn_weights, _ = self.self_attn(
......@@ -376,17 +380,17 @@ class TFBlenderbotSmallDecoderLayer(tf.keras.layers.Layer):
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(decoder_attention_heads,)*
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
*(decoder_attention_heads,)*
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......
......@@ -736,7 +736,11 @@ class TFHubertAttention(tf.keras.layers.Layer):
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
......
......@@ -189,7 +189,11 @@ class TFMarianAttention(tf.keras.layers.Layer):
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
......@@ -339,11 +343,11 @@ class TFMarianEncoderLayer(tf.keras.layers.Layer):
def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False):
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states, self_attn_weights, _ = self.self_attn(
......@@ -416,17 +420,17 @@ class TFMarianDecoderLayer(tf.keras.layers.Layer):
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(decoder_attention_heads,)*
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
*(decoder_attention_heads,)*
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......
......@@ -149,7 +149,11 @@ class TFMBartAttention(tf.keras.layers.Layer):
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
......
......@@ -190,7 +190,11 @@ class TFPegasusAttention(tf.keras.layers.Layer):
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
......
......@@ -17,7 +17,13 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available
from ...file_utils import (
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
_import_structure = {
......@@ -36,6 +42,14 @@ if is_speech_available():
if is_sentencepiece_available():
_import_structure["processing_speech_to_text"] = ["Speech2TextProcessor"]
if is_tf_available():
_import_structure["modeling_tf_speech_to_text"] = [
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSpeech2TextForConditionalGeneration",
"TFSpeech2TextModel",
"TFSpeech2TextPreTrainedModel",
]
if is_torch_available():
_import_structure["modeling_speech_to_text"] = [
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
......@@ -57,6 +71,14 @@ if TYPE_CHECKING:
if is_sentencepiece_available():
from .processing_speech_to_text import Speech2TextProcessor
if is_tf_available():
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeech2TextForConditionalGeneration,
TFSpeech2TextModel,
TFSpeech2TextPreTrainedModel,
)
if is_torch_available():
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
......
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow Speech2Text model."""
import random
from typing import Dict, Optional, Tuple
import tensorflow as tf
from ...activations_tf import get_tf_activation, glu
from ...file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
input_processing,
keras_serializable,
shape_list,
)
from ...utils import logging
from .configuration_speech_to_text import Speech2TextConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Speech2TextConfig"
_TOKENIZER_FOR_DOC = "Speech2TextTokenizer"
_CHECKPOINT_FOR_DOC = "facebook/s2t-small-librispeech-asr"
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/s2t-small-librispeech-asr",
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
]
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
)
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None, past_key_values_length: int = 0):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFConv1dSubsampler(tf.keras.layers.Layer):
"""
Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation
via gated linear units (https://arxiv.org/abs/1911.08460)
"""
def __init__(self, config: Speech2TextConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.num_layers = config.num_conv_layers
self.in_channels = config.input_feat_per_channel * config.input_channels
self.mid_channels = config.conv_channels
self.out_channels = config.d_model
self.kernel_sizes = config.conv_kernel_sizes
self.conv_layers = [
tf.keras.layers.Conv1D(
filters=self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2,
kernel_size=k,
strides=2,
name=f"conv_layers.{i}",
)
for i, k in enumerate(self.kernel_sizes)
]
def call(self, input_features: tf.Tensor) -> tf.Tensor:
hidden_states = tf.identity(input_features) # TF Conv1D assumes Batch x Time x Channels, same as the input
for i, conv in enumerate(self.conv_layers):
# equivalent to `padding=k // 2` on PT's `nn.Conv1d`
pad_len = self.kernel_sizes[i] // 2
hidden_shapes = shape_list(hidden_states)
hidden_states = tf.concat(
(
tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])),
hidden_states,
tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])),
),
axis=1,
)
hidden_states = conv(hidden_states)
hidden_states = glu(hidden_states, axis=2) # GLU over the Channel dimension
return hidden_states
class TFSpeech2TextSinusoidalPositionalEmbedding(tf.keras.layers.Layer):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, **kwargs):
super().__init__(**kwargs)
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.embedding_weights = self._get_embedding(num_positions + self.offset, embedding_dim, padding_idx)
@staticmethod
def _get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None) -> tf.Tensor:
"""
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = tf.math.log(10000.0) / (half_dim - 1)
emb = tf.math.exp(tf.range(half_dim, dtype=tf.float32) * -emb)
emb = tf.expand_dims(tf.range(num_embeddings, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0)
emb = tf.reshape(tf.concat([tf.math.sin(emb), tf.math.cos(emb)], axis=1), shape=[num_embeddings, -1])
if embedding_dim % 2 == 1:
# zero pad
emb = tf.concat([emb, tf.zeros(num_embeddings, 1)], axis=1)
if padding_idx is not None:
emb = tf.concat([emb[:padding_idx, :], tf.zeros((1, emb.shape[1])), emb[padding_idx + 1 :, :]], axis=0)
return emb
def _resize_embeddings(self):
"""Recreates (and effectivelly resizes) the sinusoidal embeddings"""
self.embeddings = self.add_weight(
name="weights", # name also used in PT
shape=self.embedding_weights.shape,
)
self.embeddings.assign(self.embedding_weights)
def build(self, input_shape: tf.TensorShape):
"""
Build shared token embedding layer Shared weights logic adapted from
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
"""
self._resize_embeddings()
super().build(input_shape)
def call(self, input_ids: tf.Tensor, past_key_values_length: int = 0) -> tf.Tensor:
bsz, seq_len = shape_list(input_ids)
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len
if max_pos > shape_list(self.embeddings)[0]:
self.embedding_weights = self._get_embedding(max_pos + self.offset, self.embedding_dim, self.padding_idx)
self._resize_embeddings()
return tf.reshape(tf.gather(self.embeddings, tf.reshape(position_ids, (-1,)), axis=0), (bsz, seq_len, -1))
@staticmethod
def create_position_ids_from_input_ids(
input_ids: tf.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0
) -> tf.Tensor:
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: tf.Tensor x:
Returns: tf.Tensor
"""
mask = tf.cast(tf.math.not_equal(input_ids, padding_idx), dtype=tf.int32)
incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask
return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Speech2Text
class TFSpeech2TextAttention(tf.keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None,
attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
training=False,
) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {shape_list(attn_weights)}",
)
if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}",
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = tf.nn.softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}",
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {shape_list(attn_output)}",
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
class TFSpeech2TextEncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: Speech2TextConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFSpeech2TextAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False
):
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
training=training,
)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return hidden_states, self_attn_weights
class TFSpeech2TextDecoderLayer(tf.keras.layers.Layer):
def __init__(self, config: Speech2TextConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFSpeech2TextAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFSpeech2TextAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self,
hidden_states,
attention_mask: Optional[tf.Tensor] = None,
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
training=training,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
training=training,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
class TFSpeech2TextPreTrainedModel(TFPreTrainedModel):
config_class = Speech2TextConfig
base_model_prefix = "model"
main_input_name = "input_features"
# Overwritten property due to different expected input shape and type
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
return {
self.main_input_name: tf.random.uniform(
[
1,
random.randint(1, self.config.max_source_positions), # time
self.config.input_feat_per_channel * self.config.input_channels, # input channels
]
),
"decoder_input_ids": tf.constant([[2, 3]], dtype=tf.int32),
}
def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor):
"""
Computes the output length of the convolutional layers
"""
for _ in range(self.config.num_conv_layers):
input_lengths = (input_lengths - 1) // 2 + 1
return input_lengths
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
"decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"),
"decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
SPEECH_TO_TEXT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using [`tf.keras.Model.fit`] method which currently requires having all the
tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the
first positional argument :
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
</Tip>
Parameters:
config ([`Speech2TextConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
SPEECH_TO_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`):
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained
by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.*
via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
[`Speech2TextTokenizer`] should be used for extracting the fbank features, padding and conversion into a
tensor of floats. See [`~Speech2TextTokenizer.__call__`]
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tf.FloatTensor`, *optional*):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFSpeech2TextEncoder(tf.keras.layers.Layer):
config_class = Speech2TextConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TFSpeech2TextEncoderLayer`].
Args:
config: Speech2TextConfig
"""
def __init__(self, config: Speech2TextConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_source_positions
self.embed_scale = tf.math.sqrt(float(embed_dim)) if config.scale_embedding else 1.0
self.conv = TFConv1dSubsampler(config, name="conv")
self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding(
num_positions=config.max_source_positions,
embedding_dim=embed_dim,
padding_idx=self.padding_idx,
name="embed_positions",
)
self.layers = [TFSpeech2TextEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor):
"""
Computes the output length of the convolutional layers
"""
for _ in range(self.config.num_conv_layers):
input_lengths = (input_lengths - 1) // 2 + 1
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask):
# generate creates 3D attention mask, because of the shape of input_features
# convert it to 2D if thats the case
if len(attention_mask.shape) > 2:
attention_mask = attention_mask[:, :, -1]
subsampled_lengths = self._get_feat_extract_output_lengths(tf.math.reduce_sum(attention_mask, -1))
bsz = shape_list(attention_mask)[0]
indices = tf.concat(
(
tf.expand_dims(tf.range(bsz, dtype=attention_mask.dtype), -1),
tf.expand_dims(subsampled_lengths - 1, -1),
),
axis=-1,
)
attention_mask = tf.scatter_nd(indices=indices, updates=tf.ones(bsz), shape=[bsz, feature_vector_length])
attention_mask = tf.cast(tf.reverse(tf.math.cumsum(tf.reverse(attention_mask, [-1]), -1), [-1]), tf.int64)
return attention_mask
def call(
self,
input_features=None,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`):
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_features`, the [`Speech2TextTokenizer`] should be used for extracting the fbank features,
padding and conversion into a tensor of floats. See [`~Speech2TextTokenizer.__call__`]
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_features,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if "input_ids" in inputs:
inputs["input_features"] = inputs.pop("input_ids")
if inputs["input_features"] is None:
raise ValueError("You have to specify input_features")
inputs_embeds = self.conv(inputs["input_features"])
inputs_embeds = self.embed_scale * inputs_embeds
# subsample attention mask if necessary
if inputs["attention_mask"] is not None:
inputs["attention_mask"] = self._get_feature_vector_attention_mask(
inputs_embeds.shape[1], inputs["attention_mask"]
)
padding_mask = tf.cast(tf.math.not_equal(inputs["attention_mask"], 1), tf.int64)
else:
padding_mask = tf.zeros(inputs_embeds.shape[:-1], dtype=tf.int64)
embed_pos = self.embed_positions(padding_mask)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout(hidden_states, training=inputs["training"])
# check attention mask and invert
if inputs["attention_mask"] is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
inputs["attention_mask"] = _expand_mask(inputs["attention_mask"])
encoder_states = () if inputs["output_hidden_states"] else None
all_attentions = () if inputs["output_attentions"] else None
# check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they have to be disabled in other modes than eager.
if inputs["head_mask"] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
)
for idx, encoder_layer in enumerate(self.layers):
if inputs["output_hidden_states"]:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if inputs["training"] and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(
hidden_states,
inputs["attention_mask"],
inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
training=training,
)
if inputs["output_attentions"]:
all_attentions += (attn,)
hidden_states = self.layer_norm(hidden_states)
if inputs["output_hidden_states"]:
encoder_states = encoder_states + (hidden_states,)
if not inputs["return_dict"]:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
@keras_serializable
class TFSpeech2TextDecoder(tf.keras.layers.Layer):
config_class = Speech2TextConfig
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFSpeech2TextDecoderLayer`]
Args:
config: Speech2TextConfig
"""
def __init__(self, config: Speech2TextConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_target_positions
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.embed_tokens = TFSharedEmbeddings(config.vocab_size, config.d_model, name="embed_tokens")
self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding(
num_positions=config.max_target_positions,
embedding_dim=config.d_model,
padding_idx=self.padding_idx,
name="embed_positions",
)
self.layers = [TFSpeech2TextDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1])
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def call(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all ``decoder_input_ids``` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
elif inputs["inputs_embeds"] is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = (
shape_list(inputs["past_key_values"][0][0])[2] if inputs["past_key_values"] is not None else 0
)
if inputs["inputs_embeds"] is None:
inputs_embeds = self.embed_tokens(inputs["input_ids"]) * self.embed_scale
else:
inputs_embeds = inputs["inputs_embeds"]
attention_mask = self._prepare_decoder_attention_mask(
inputs["attention_mask"], input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if inputs["encoder_hidden_states"] is not None and inputs["encoder_attention_mask"] is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
inputs["encoder_attention_mask"] = _expand_mask(inputs["encoder_attention_mask"], tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(inputs["input_ids"], past_key_values_length=past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout(hidden_states, training=inputs["training"])
# decoder layers
all_hidden_states = () if inputs["output_hidden_states"] else None
all_self_attns = () if inputs["output_attentions"] else None
all_cross_attns = () if (inputs["output_attentions"] and inputs["encoder_hidden_states"] is not None) else None
next_decoder_cache = () if inputs["use_cache"] else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they have to be disabled in other modes than eager.
for attn_mask in ["head_mask", "cross_attn_head_mask"]:
if inputs[attn_mask] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs[attn_mask])[0],
len(self.layers),
message=f"The {attn_mask} should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs[attn_mask])[0]}.",
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if inputs["training"] and (dropout_probability < self.layerdrop):
continue
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
cross_attn_layer_head_mask = (
inputs["cross_attn_head_mask"][idx] if inputs["cross_attn_head_mask"] is not None else None
)
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
)
if inputs["use_cache"]:
next_decoder_cache += (present_key_value,)
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns += (layer_cross_attn,)
hidden_states = self.layer_norm(hidden_states)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
next_cache = (inputs["encoder_hidden_states"], next_decoder_cache) if use_cache else None
if not inputs["return_dict"]:
return hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
@keras_serializable
class TFSpeech2TextMainLayer(tf.keras.layers.Layer):
config_class = Speech2TextConfig
def __init__(self, config: Speech2TextConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.encoder = TFSpeech2TextEncoder(config, name="encoder")
self.decoder = TFSpeech2TextDecoder(config, name="decoder")
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.decoder.embed_tokens = new_embeddings
def call(
self,
input_features=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs
):
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_features,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if "input_ids" in inputs:
inputs["input_features"] = inputs.pop("input_ids")
# if the attribute is not set, fetch it from the config
for attr in ("output_attentions", "output_hidden_states", "use_cache"):
if inputs[attr] is None:
inputs[attr] = getattr(self.config, attr)
inputs["return_dict"] = (
inputs["return_dict"] if inputs["return_dict"] is not None else self.config.use_return_dict
)
if inputs["encoder_outputs"] is None:
inputs["encoder_outputs"] = self.encoder(
input_features=inputs["input_features"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
elif inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], TFBaseModelOutput):
inputs["encoder_outputs"] = TFBaseModelOutput(
last_hidden_state=inputs["encoder_outputs"][0],
hidden_states=inputs["encoder_outputs"][1] if len(inputs["encoder_outputs"]) > 1 else None,
attentions=inputs["encoder_outputs"][2] if len(inputs["encoder_outputs"]) > 2 else None,
)
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
elif not inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], tuple):
inputs["encoder_outputs"] = inputs["encoder_outputs"].to_tuple()
# downsample encoder attention mask
if inputs["attention_mask"] is not None:
inputs["encoder_attention_mask"] = self.encoder._get_feature_vector_attention_mask(
inputs["encoder_outputs"][0].shape[1], inputs["attention_mask"]
)
else:
inputs["encoder_attention_mask"] = None
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=inputs["decoder_input_ids"],
attention_mask=inputs["decoder_attention_mask"],
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["encoder_attention_mask"],
head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
if not inputs["return_dict"]:
return decoder_outputs + inputs["encoder_outputs"]
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
)
@add_start_docstrings(
"The bare Speech2Text Model outputting raw hidden-states without any specific head on top.",
SPEECH_TO_TEXT_START_DOCSTRING,
)
class TFSpeech2TextModel(TFSpeech2TextPreTrainedModel):
def __init__(self, config: Speech2TextConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFSpeech2TextMainLayer(config, name="model")
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSeq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_features=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs
):
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_features,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if "input_ids" in inputs:
inputs["input_features"] = inputs.pop("input_ids")
outputs = self.model(
input_features=inputs["input_features"],
attention_mask=inputs["attention_mask"],
decoder_input_ids=inputs["decoder_input_ids"],
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
encoder_outputs=inputs["encoder_outputs"],
past_key_values=inputs["past_key_values"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
return outputs
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
@add_start_docstrings(
"The Speech2Text Model with a language modeling head. Can be used for summarization.",
SPEECH_TO_TEXT_START_DOCSTRING,
)
class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCausalLanguageModelingLoss):
def __init__(self, config: Speech2TextConfig):
super().__init__(config)
self.model = TFSpeech2TextMainLayer(config, name="model")
self.lm_head = tf.keras.layers.Dense(self.config.vocab_size, use_bias=False, name="lm_head")
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
def resize_token_embeddings(self, new_num_tokens: int) -> tf.Variable:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
return new_embeddings
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_features=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs
):
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> model = TFSpeech2TextForConditionalGeneration.from_pretrained(
... "facebook/s2t-small-librispeech-asr", from_pt=True
... )
>>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> ds.set_format(type="tf")
>>> input_features = processor(
... ds["speech"][0], sampling_rate=16000, return_tensors="tf"
>>> ).input_features # Batch size 1
>>> generated_ids = model.generate(input_features)
>>> transcription = processor.batch_decode(generated_ids)
```"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_features,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if "input_ids" in inputs:
inputs["input_features"] = inputs.pop("input_ids")
inputs["return_dict"] = (
inputs["return_dict"] if inputs["return_dict"] is not None else self.config.use_return_dict
)
if inputs["labels"] is not None:
if inputs["decoder_input_ids"] is None:
inputs["decoder_input_ids"] = shift_tokens_right(
inputs["labels"], self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_features=inputs["input_features"],
attention_mask=inputs["attention_mask"],
decoder_input_ids=inputs["decoder_input_ids"],
encoder_outputs=inputs["encoder_outputs"],
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
lm_logits = self.lm_head(outputs[0])
masked_lm_loss = None if inputs["labels"] is None else self.hf_compute_loss(inputs["labels"], lm_logits)
if not inputs["return_dict"]:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFSeq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
**kwargs
):
if past is not None and len(past) <= 2:
if not isinstance(past[0], tf.Tensor):
raise ValueError(f"`past[0]` has to be of type `tf.Tensor`, but is {type(past[0])}")
encoder_outputs = TFBaseModelOutput(last_hidden_state=past[0])
if len(past) == 1:
past_key_values = None
else:
past_key_values = past[1]
if not past_key_values:
raise ValueError(f"decoder cached states must be truthy, got {past_key_values}")
decoder_input_ids = decoder_input_ids[:, -1:]
else:
raise ValueError(f"`past` must be an iterable with length 1 or 2, got {past}")
return {
"input_features": None, # needs to be passed to make Keras.layer.__call__ happy
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
@staticmethod
def _reorder_cache(past, beam_idx):
if len(past) == 1:
return past
past_key_values = past[1]
reordered_past = ()
for layer_past_key_values in past_key_values:
reordered_past += (
tuple(tf.gather(layer_past_key_value, beam_idx) for layer_past_key_value in layer_past_key_values[:2])
+ layer_past_key_values[2:],
)
return (past[0], reordered_past)
......@@ -765,7 +765,11 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer):
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
......
......@@ -198,6 +198,9 @@ TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None
......@@ -276,6 +279,13 @@ class TFAutoModelForSequenceClassification(metaclass=DummyObject):
requires_backends(self, ["tf"])
class TFAutoModelForSpeechSeq2Seq(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForTableQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
......@@ -1678,6 +1688,30 @@ class TFRoFormerPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["tf"])
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFSpeech2TextForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSpeech2TextModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSpeech2TextPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment