Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
83c552d3
Unverified
Commit
83c552d3
authored
Jan 06, 2022
by
NielsRogge
Committed by
GitHub
Jan 06, 2022
Browse files
Add detectron2 to Github actions (#15053)
parent
5ab87cd4
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
11 additions
and
9 deletions
+11
-9
.github/workflows/self-scheduled.yml
.github/workflows/self-scheduled.yml
+2
-0
tests/test_modeling_layoutlmv2.py
tests/test_modeling_layoutlmv2.py
+9
-9
No files found.
.github/workflows/self-scheduled.yml
View file @
83c552d3
...
...
@@ -37,6 +37,7 @@ jobs:
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
-
name
:
Are GPUs recognized by our DL frameworks
run
:
|
...
...
@@ -241,6 +242,7 @@ jobs:
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
-
name
:
Are GPUs recognized by our DL frameworks
run
:
|
...
...
tests/test_modeling_layoutlmv2.py
View file @
83c552d3
...
...
@@ -478,11 +478,11 @@ class LayoutLMv2ModelTest(ModelTesterMixin, unittest.TestCase):
def
prepare_layoutlmv2_batch_inputs
():
# Here we prepare a batch of 2 sequences to test a LayoutLMv2 forward pass on:
# fmt: off
input_ids
=
torch
.
tensor
([[
101
,
1019
,
1014
,
1016
,
1037
,
12849
,
4747
,
1004
,
14246
,
2278
,
5439
,
4524
,
5002
,
2930
,
2193
,
2930
,
4341
,
3208
,
1005
,
1055
,
2171
,
2848
,
11300
,
3531
,
102
],[
101
,
4070
,
4034
,
7020
,
1024
,
3058
,
1015
,
1013
,
2861
,
1013
,
6070
,
19274
,
2772
,
6205
,
27814
,
16147
,
16147
,
4343
,
2047
,
10283
,
10969
,
14389
,
1012
,
2338
,
102
]]
,
device
=
torch_device
)
# noqa: E231
bbox
=
torch
.
tensor
([[[
0
,
0
,
0
,
0
],[
423
,
237
,
440
,
251
],[
427
,
272
,
441
,
287
],[
419
,
115
,
437
,
129
],[
961
,
885
,
992
,
912
],[
256
,
38
,
330
,
58
],[
256
,
38
,
330
,
58
],[
336
,
42
,
353
,
57
],[
360
,
39
,
401
,
56
],[
360
,
39
,
401
,
56
],[
411
,
39
,
471
,
59
],[
479
,
41
,
528
,
59
],[
533
,
39
,
630
,
60
],[
67
,
113
,
134
,
131
],[
141
,
115
,
209
,
132
],[
68
,
149
,
133
,
166
],[
141
,
149
,
187
,
164
],[
195
,
148
,
287
,
165
],[
195
,
148
,
287
,
165
],[
195
,
148
,
287
,
165
],[
295
,
148
,
349
,
165
],[
441
,
149
,
492
,
166
],[
497
,
149
,
546
,
164
],[
64
,
201
,
125
,
218
],[
1000
,
1000
,
1000
,
1000
]],[[
0
,
0
,
0
,
0
],[
662
,
150
,
754
,
166
],[
665
,
199
,
742
,
211
],[
519
,
213
,
554
,
228
],[
519
,
213
,
554
,
228
],[
134
,
433
,
187
,
454
],[
130
,
467
,
204
,
480
],[
130
,
467
,
204
,
480
],[
130
,
467
,
204
,
480
],[
130
,
467
,
204
,
480
],[
130
,
467
,
204
,
480
],[
314
,
469
,
376
,
482
],[
504
,
684
,
582
,
706
],[
941
,
825
,
973
,
900
],[
941
,
825
,
973
,
900
],[
941
,
825
,
973
,
900
],[
941
,
825
,
973
,
900
],[
610
,
749
,
652
,
765
],[
130
,
659
,
168
,
672
],[
176
,
657
,
237
,
672
],[
238
,
657
,
312
,
672
],[
443
,
653
,
628
,
672
],[
443
,
653
,
628
,
672
],[
716
,
301
,
825
,
317
],[
1000
,
1000
,
1000
,
1000
]]]
,
device
=
torch_device
)
# noqa: E231
input_ids
=
torch
.
tensor
([[
101
,
1019
,
1014
,
1016
,
1037
,
12849
,
4747
,
1004
,
14246
,
2278
,
5439
,
4524
,
5002
,
2930
,
2193
,
2930
,
4341
,
3208
,
1005
,
1055
,
2171
,
2848
,
11300
,
3531
,
102
],[
101
,
4070
,
4034
,
7020
,
1024
,
3058
,
1015
,
1013
,
2861
,
1013
,
6070
,
19274
,
2772
,
6205
,
27814
,
16147
,
16147
,
4343
,
2047
,
10283
,
10969
,
14389
,
1012
,
2338
,
102
]])
# noqa: E231
bbox
=
torch
.
tensor
([[[
0
,
0
,
0
,
0
],[
423
,
237
,
440
,
251
],[
427
,
272
,
441
,
287
],[
419
,
115
,
437
,
129
],[
961
,
885
,
992
,
912
],[
256
,
38
,
330
,
58
],[
256
,
38
,
330
,
58
],[
336
,
42
,
353
,
57
],[
360
,
39
,
401
,
56
],[
360
,
39
,
401
,
56
],[
411
,
39
,
471
,
59
],[
479
,
41
,
528
,
59
],[
533
,
39
,
630
,
60
],[
67
,
113
,
134
,
131
],[
141
,
115
,
209
,
132
],[
68
,
149
,
133
,
166
],[
141
,
149
,
187
,
164
],[
195
,
148
,
287
,
165
],[
195
,
148
,
287
,
165
],[
195
,
148
,
287
,
165
],[
295
,
148
,
349
,
165
],[
441
,
149
,
492
,
166
],[
497
,
149
,
546
,
164
],[
64
,
201
,
125
,
218
],[
1000
,
1000
,
1000
,
1000
]],[[
0
,
0
,
0
,
0
],[
662
,
150
,
754
,
166
],[
665
,
199
,
742
,
211
],[
519
,
213
,
554
,
228
],[
519
,
213
,
554
,
228
],[
134
,
433
,
187
,
454
],[
130
,
467
,
204
,
480
],[
130
,
467
,
204
,
480
],[
130
,
467
,
204
,
480
],[
130
,
467
,
204
,
480
],[
130
,
467
,
204
,
480
],[
314
,
469
,
376
,
482
],[
504
,
684
,
582
,
706
],[
941
,
825
,
973
,
900
],[
941
,
825
,
973
,
900
],[
941
,
825
,
973
,
900
],[
941
,
825
,
973
,
900
],[
610
,
749
,
652
,
765
],[
130
,
659
,
168
,
672
],[
176
,
657
,
237
,
672
],[
238
,
657
,
312
,
672
],[
443
,
653
,
628
,
672
],[
443
,
653
,
628
,
672
],[
716
,
301
,
825
,
317
],[
1000
,
1000
,
1000
,
1000
]]])
# noqa: E231
image
=
ImageList
(
torch
.
randn
((
2
,
3
,
224
,
224
)),
image_sizes
=
[(
224
,
224
),
(
224
,
224
)])
# noqa: E231
attention_mask
=
torch
.
tensor
([[
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
],[
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
],]
,
device
=
torch_device
)
# noqa: E231
token_type_ids
=
torch
.
tensor
([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]]
,
device
=
torch_device
)
# noqa: E231
attention_mask
=
torch
.
tensor
([[
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
],[
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
],])
# noqa: E231
token_type_ids
=
torch
.
tensor
([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]])
# noqa: E231
# fmt: on
return
input_ids
,
bbox
,
image
,
attention_mask
,
token_type_ids
...
...
@@ -505,11 +505,11 @@ class LayoutLMv2ModelIntegrationTest(unittest.TestCase):
# forward pass
outputs
=
model
(
input_ids
=
input_ids
,
bbox
=
bbox
,
image
=
image
,
attention_mask
=
attention_mask
,
token_type_ids
=
token_type_ids
,
input_ids
=
input_ids
.
to
(
torch_device
)
,
bbox
=
bbox
.
to
(
torch_device
)
,
image
=
image
.
to
(
torch_device
)
,
attention_mask
=
attention_mask
.
to
(
torch_device
)
,
token_type_ids
=
token_type_ids
.
to
(
torch_device
)
,
)
# verify the sequence output
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment