"vscode:/vscode.git/clone" did not exist on "d9d0f1140b9ffbcffd327f5de918ae8a89961518"
Unverified Commit 826f0457 authored by Lysandre Debut's avatar Lysandre Debut Committed by GitHub
Browse files

Model templates encoder only (#8509)



* Model templates

* TensorFlow

* Remove pooler

* CI

* Tokenizer + Refactoring

* Encoder-Decoder

* Let's go testing

* Encoder-Decoder in TF

* Let's go testing in TF

* Documentation

* README

* Fixes

* Better names

* Style

* Update docs

* Choose to skip either TF or PT

* Code quality fixes

* Add to testing suite

* Update file path

* Cookiecutter path

* Update `transformers` path

* Handle rebasing

* Remove seq2seq from model templates

* Remove s2s config

* Apply Sylvain and Patrick comments

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Last fixes from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 42e2d02e
{
"modelname": "PTEncoderBERT",
"uppercase_modelname": "PT_ENCODER_BERT",
"lowercase_modelname": "pt_encoder_bert",
"camelcase_modelname": "PtEncoderBert",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": "Based on BERT",
"generate_tensorflow_and_pytorch": "PyTorch"
}
{
"modelname": "BIEncoderBERT",
"uppercase_modelname": "BI_ENCODER_BERT",
"lowercase_modelname": "bi_encoder_bert",
"camelcase_modelname": "BiEncoderBert",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "bi-brand-new-bert-base-cased",
"tokenizer_type": "Standalone",
"generate_tensorflow_and_pytorch": "PyTorch & TensorFlow"
}
# coding=utf-8
# Copyright 2018 XXX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import XxxConfig, is_tf_available
from transformers.testing_utils import CACHE_DIR, require_tf, slow
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
if is_tf_available():
import tensorflow as tf
from transformers.modeling_tf_xxx import (
TFXxxForMaskedLM,
TFXxxForMultipleChoice,
TFXxxForQuestionAnswering,
TFXxxForSequenceClassification,
TFXxxForTokenClassification,
TFXxxModel,
)
@require_tf
class TFXxxModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFXxxModel,
TFXxxForMaskedLM,
TFXxxForMultipleChoice,
TFXxxForQuestionAnswering,
TFXxxForSequenceClassification,
TFXxxForTokenClassification,
)
if is_tf_available()
else ()
)
class TFXxxModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = XxxConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFXxxModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)
)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFXxxForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFXxxForSequenceClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFXxxForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFXxxForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFXxxForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self):
self.model_tester = TFXxxModelTest.TFXxxModelTester(self)
self.config_tester = ConfigTester(self, config_class=XxxConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in ["xxx-base-uncased"]:
model = TFXxxModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
# coding=utf-8
# Copyright 2018 XXX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers.tokenization_bert import VOCAB_FILES_NAMES, XxxTokenizer
from .test_tokenization_common import TokenizerTesterMixin
class XxxTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = XxxTokenizer
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_tokenizer(self, **kwargs):
return XxxTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00E9d,running"
output_text = "unwanted, running"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("UNwant\u00E9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
def test_special_tokens_as_you_expect(self):
"""If you are training a seq2seq model that expects a decoder_prefix token make sure it is prepended to decoder_input_ids """
pass
{
"modelname": "TFEncoderBERT",
"uppercase_modelname": "TF_ENCODER_BERT",
"lowercase_modelname": "tf_encoder_bert",
"camelcase_modelname": "TfEncoderBert",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": "Based on BERT",
"generate_tensorflow_and_pytorch": "TensorFlow"
}
......@@ -279,20 +279,9 @@ def check_models_are_documented(module, doc_file):
def _get_model_name(module):
""" Get the model name for the module defining it."""
splits = module.__name__.split("_")
splits = splits[(2 if splits[1] in ["flax", "tf"] else 1) :]
# Secial case for transfo_xl
if splits[-1] == "xl":
return "_".join(splits[-2:])
# Special case for xlm_prophetnet
if splits[-1] == "prophetnet" and splits[-2] == "xlm":
return "_".join(splits[-2:])
# Secial case for xlm_roberta
if splits[-1] == "roberta" and splits[-2] == "xlm":
return "_".join(splits[-2:])
# Special case for bert_generation
if splits[-1] == "generation" and splits[-2] == "bert":
return "_".join(splits[-2:])
return splits[-1]
return "_".join(splits)
def check_all_models_are_documented():
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment