Unverified Commit 8211c59b authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

[KOSMOS-2] Update docs (#27157)

Update docs
parent d39352d1
......@@ -368,8 +368,6 @@
title: I-BERT
- local: model_doc/jukebox
title: Jukebox
- local: model_doc/kosmos-2
title: KOSMOS-2
- local: model_doc/led
title: LED
- local: model_doc/llama
......@@ -685,6 +683,8 @@
title: IDEFICS
- local: model_doc/instructblip
title: InstructBLIP
- local: model_doc/kosmos-2
title: KOSMOS-2
- local: model_doc/layoutlm
title: LayoutLM
- local: model_doc/layoutlmv2
......
......@@ -18,8 +18,7 @@ rendered properly in your Markdown viewer.
## Overview
The KOSMOS-2 model was proposed in [Kosmos-2: Grounding Multimodal Large Language Models to the World]
(https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei
The KOSMOS-2 model was proposed in [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
KOSMOS-2 is a Transformer-based causal language model and is trained using the next-word prediction task on a web-scale
dataset of grounded image-text pairs [GRIT](https://huggingface.co/datasets/zzliang/GRIT). The spatial coordinates of
......@@ -31,6 +30,11 @@ The abstract from the paper is the following:
*We introduce Kosmos-2, a Multimodal Large Language Model (MLLM), enabling new capabilities of perceiving object descriptions (e.g., bounding boxes) and grounding text to the visual world. Specifically, we represent refer expressions as links in Markdown, i.e., ``[text span](bounding boxes)'', where object descriptions are sequences of location tokens. Together with multimodal corpora, we construct large-scale data of grounded image-text pairs (called GrIT) to train the model. In addition to the existing capabilities of MLLMs (e.g., perceiving general modalities, following instructions, and performing in-context learning), Kosmos-2 integrates the grounding capability into downstream applications. We evaluate Kosmos-2 on a wide range of tasks, including (i) multimodal grounding, such as referring expression comprehension, and phrase grounding, (ii) multimodal referring, such as referring expression generation, (iii) perception-language tasks, and (iv) language understanding and generation. This work lays out the foundation for the development of Embodiment AI and sheds light on the big convergence of language, multimodal perception, action, and world modeling, which is a key step toward artificial general intelligence. Code and pretrained models are available at https://aka.ms/kosmos-2.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/kosmos_2_overview.jpg"
alt="drawing" width="600"/>
<small> Overview of tasks that KOSMOS-2 can handle. Taken from the <a href="https://arxiv.org/abs/2306.14824">original paper</a>. </small>
## Example
```python
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment