Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
7d312ad2
Unverified
Commit
7d312ad2
authored
Feb 20, 2024
by
Joao Gante
Committed by
GitHub
Feb 20, 2024
Browse files
Llama: fix batched generation (#29109)
parent
ff76e7c2
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
35 additions
and
8 deletions
+35
-8
src/transformers/models/llama/modeling_llama.py
src/transformers/models/llama/modeling_llama.py
+30
-3
tests/test_cache_utils.py
tests/test_cache_utils.py
+5
-5
No files found.
src/transformers/models/llama/modeling_llama.py
View file @
7d312ad2
...
...
@@ -101,11 +101,34 @@ class LlamaRotaryEmbedding(nn.Module):
inv_freq
=
1.0
/
(
self
.
base
**
(
torch
.
arange
(
0
,
self
.
dim
,
2
,
dtype
=
torch
.
int64
).
float
().
to
(
device
)
/
self
.
dim
))
self
.
register_buffer
(
"inv_freq"
,
inv_freq
,
persistent
=
False
)
@
property
def
sin_cached
(
self
):
logger
.
warning_once
(
"The sin_cached attribute will be removed in 4.40. Bear in mind that its contents changed in v4.38. Use "
"the forward method of RoPE from now on instead."
)
return
self
.
_sin_cached
@
property
def
cos_cached
(
self
):
logger
.
warning_once
(
"The cos_cached attribute will be removed in 4.40. Bear in mind that its contents changed in v4.38. Use "
"the forward method of RoPE from now on instead."
)
return
self
.
_cos_cached
def
forward
(
self
,
x
,
position_ids
,
seq_len
=
None
):
# x: [bs, num_attention_heads, seq_len, head_size]
freqs
=
(
self
.
inv_freq
[:,
None
].
float
().
expand
(
-
1
,
position_ids
.
shape
[
0
])
@
(
position_ids
.
float
())).
t
()
inv_freq_expanded
=
self
.
inv_freq
[
None
,
:,
None
].
float
().
expand
(
position_ids
.
shape
[
0
],
-
1
,
1
)
position_ids_expanded
=
position_ids
[:,
None
,
:].
float
()
freqs
=
(
inv_freq_expanded
@
position_ids_expanded
).
transpose
(
1
,
2
)
emb
=
torch
.
cat
((
freqs
,
freqs
),
dim
=-
1
)
return
emb
.
cos
().
to
(
dtype
=
x
.
dtype
),
emb
.
sin
().
to
(
dtype
=
x
.
dtype
)
cos
=
emb
.
cos
().
to
(
dtype
=
x
.
dtype
)
sin
=
emb
.
sin
().
to
(
dtype
=
x
.
dtype
)
# backwards compatibility
self
.
_cos_cached
=
cos
self
.
_sin_cached
=
sin
return
cos
,
sin
class
LlamaLinearScalingRotaryEmbedding
(
LlamaRotaryEmbedding
):
...
...
@@ -181,6 +204,8 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos
=
cos
.
unsqueeze
(
unsqueeze_dim
)
sin
=
sin
.
unsqueeze
(
unsqueeze_dim
)
q_embed
=
(
q
*
cos
)
+
(
rotate_half
(
q
)
*
sin
)
k_embed
=
(
k
*
cos
)
+
(
rotate_half
(
k
)
*
sin
)
return
q_embed
,
k_embed
...
...
@@ -1033,6 +1058,7 @@ class LlamaModel(LlamaPreTrainedModel):
batch_size
,
seq_length
=
input_tensor
.
shape
[:
2
]
dtype
=
input_tensor
.
dtype
device
=
input_tensor
.
device
# support going beyond cached `max_position_embedding`
if
seq_length
>
self
.
causal_mask
.
shape
[
-
1
]:
...
...
@@ -1048,8 +1074,9 @@ class LlamaModel(LlamaPreTrainedModel):
(
self
.
config
.
max_position_embeddings
,
self
.
config
.
max_position_embeddings
),
fill_value
=
torch
.
finfo
(
dtype
).
min
,
)
causal_mask
=
torch
.
triu
(
mask
,
diagonal
=
1
)
.
to
(
dtype
)
causal_mask
=
torch
.
triu
(
mask
,
diagonal
=
1
)
causal_mask
=
causal_mask
.
to
(
dtype
=
dtype
,
device
=
device
)
if
attention_mask
is
not
None
and
attention_mask
.
dim
()
==
2
:
mask_length
=
attention_mask
.
shape
[
-
1
]
padding_mask
=
causal_mask
[...,
:
mask_length
].
eq
(
0.0
)
*
attention_mask
[:,
None
,
None
,
:].
eq
(
0.0
)
...
...
tests/test_cache_utils.py
View file @
7d312ad2
...
...
@@ -293,7 +293,7 @@ class CacheIntegrationTest(unittest.TestCase):
@
parameterized
.
expand
([
"eager"
,
"sdpa"
,
"flash_attention_2"
])
def
test_static_cache_greedy_sampling_pad_left
(
self
,
attn_implementation
):
EXPECTED_GENERATION
=
[
"The best color is the one that complements the s
ubject you are photograph
"
,
"The best color is the one that complements the s
kin tone of the
"
,
"We should not undermind the issues at hand.
\n
We should not undermind the issues"
,
]
...
...
@@ -333,18 +333,18 @@ class CacheIntegrationTest(unittest.TestCase):
@
parameterized
.
expand
([
"eager"
,
"sdpa"
,
"flash_attention_2"
])
def
test_static_cache_greedy_sampling_pad_right
(
self
,
attn_implementation
):
EXPECTED_GENERATION
=
[
"The best color is
\n\n\n\n\n\n\n\n\n\n
"
,
"We should not undermind the issues at hand
, but address them head on.
\n
I think
"
,
"The best color is
Ћ the one that complements the skin tone of
"
,
"We should not undermind the issues at hand
.
\n
We should not undermind the issues
"
,
]
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"NousResearch/Llama-2-7b-chat-hf"
,
padding_side
=
"
lef
t"
,
pad_token
=
"<s>"
"NousResearch/Llama-2-7b-chat-hf"
,
padding_side
=
"
righ
t"
,
pad_token
=
"<s>"
)
model
=
AutoModelForCausalLM
.
from_pretrained
(
"NousResearch/Llama-2-7b-chat-hf"
,
torch_dtype
=
torch
.
bfloat16
,
attn_implementation
=
attn_implementation
,
).
to
(
"cuda:1"
)
).
to
(
torch_device
)
inputs
=
tokenizer
(
[
"The best color is"
,
"We should not undermind the issues at hand"
],
padding
=
True
,
return_tensors
=
"pt"
).
to
(
model
.
device
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment