Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
7c9f8f93
Commit
7c9f8f93
authored
Sep 26, 2019
by
thomwolf
Browse files
fix tests
parent
d6dde438
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
35 additions
and
29 deletions
+35
-29
examples/run_tf_glue.py
examples/run_tf_glue.py
+22
-16
pytorch_transformers/modeling_tf_bert.py
pytorch_transformers/modeling_tf_bert.py
+13
-13
No files found.
examples/run_tf_glue.py
View file @
7c9f8f93
import
tensorflow
as
tf
import
tensorflow_datasets
from
pytorch_
transformers
import
BertTokenizer
,
BertForSequenceClassification
,
TFBertForSequenceClassification
,
glue_convert_examples_to_features
from
transformers
import
*
# Load tokenizer, model
, dataset
# Load
dataset,
tokenizer, model
from pretrained model/vocabulary
tokenizer
=
BertTokenizer
.
from_pretrained
(
'bert-base-cased'
)
tf_model
=
TFBertForSequenceClassification
.
from_pretrained
(
'bert-base-cased
'
)
dataset
=
tensorflow_datasets
.
load
(
"glue/mrpc"
)
dataset
=
tensorflow_datasets
.
load
(
'glue/mrpc
'
)
model
=
TFBertForSequenceClassification
.
from_pretrained
(
'bert-base-cased'
)
# Prepare dataset for GLUE
train_dataset
=
glue_convert_examples_to_features
(
dataset
[
'train'
],
tokenizer
,
task
=
'mrpc'
,
max_length
=
128
)
valid_dataset
=
glue_convert_examples_to_features
(
dataset
[
'validation'
],
tokenizer
,
task
=
'mrpc'
,
max_length
=
128
)
# Prepare dataset for GLUE
as a tf.data.Dataset instance
train_dataset
=
glue_convert_examples_to_features
(
dataset
[
'train'
],
tokenizer
,
task
=
'mrpc'
)
valid_dataset
=
glue_convert_examples_to_features
(
dataset
[
'validation'
],
tokenizer
,
task
=
'mrpc'
)
train_dataset
=
train_dataset
.
shuffle
(
100
).
batch
(
32
).
repeat
(
3
)
valid_dataset
=
valid_dataset
.
batch
(
64
)
# Compile tf.keras model
for training
#
Prepare training:
Compile tf.keras model
with optimizer, loss and learning rate schedule
learning_rate
=
tf
.
keras
.
optimizers
.
schedules
.
PolynomialDecay
(
2e-5
,
345
,
end_learning_rate
=
0
)
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
learning_rate
,
epsilon
=
1e-08
,
clipnorm
=
1.0
)
loss
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
)
tf_model
.
compile
(
optimizer
=
optimizer
,
loss
=
loss
,
metrics
=
[
'sparse_categorical_accuracy'
])
model
.
compile
(
optimizer
=
optimizer
,
loss
=
loss
,
metrics
=
[
'sparse_categorical_accuracy'
])
# Train and evaluate using tf.keras.Model.fit()
tf_model
.
fit
(
train_dataset
,
epochs
=
3
,
steps_per_epoch
=
115
,
validation_data
=
valid_dataset
,
validation_steps
=
7
)
model
.
fit
(
train_dataset
,
epochs
=
3
,
steps_per_epoch
=
115
,
validation_data
=
valid_dataset
,
validation_steps
=
7
)
# Save the model and load it in PyTorch
tf_
model
.
save_pretrained
(
'./
runs
/'
)
p
t
_model
=
BertForSequenceClassification
.
from_pretrained
(
'./
runs
/'
,
from_tf
=
True
)
# Save the
TensorFlow
model and load it in PyTorch
model
.
save_pretrained
(
'./
save
/'
)
p
ytorch
_model
=
BertForSequenceClassification
.
from_pretrained
(
'./
save
/'
,
from_tf
=
True
)
# Quickly inspect a few predictions
inputs
=
tokenizer
.
encode_plus
(
"I said the company is doing great"
,
"The company has good results"
,
add_special_tokens
=
True
,
return_tensors
=
'pt'
)
pred
=
pt_model
(
torch
.
tensor
(
tokens
))
# Quickly inspect a few predictions - MRPC is a paraphrasing task
inputs
=
tokenizer
.
encode_plus
(
"The company is doing great"
,
"The company has good results"
,
add_special_tokens
=
True
,
return_tensors
=
'pt'
)
pred
=
pytorch_model
(
**
inputs
)
print
(
"Paraphrase"
if
pred
.
argmax
().
item
()
==
0
else
"Not paraphrase"
)
pytorch_transformers/modeling_tf_bert.py
View file @
7c9f8f93
...
...
@@ -199,13 +199,13 @@ class TFBertSelfAttention(tf.keras.layers.Layer):
self
.
all_head_size
=
self
.
num_attention_heads
*
self
.
attention_head_size
self
.
query
=
tf
.
keras
.
layers
.
Dense
(
self
.
all_head_size
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'query'
)
self
.
key
=
tf
.
keras
.
layers
.
Dense
(
self
.
all_head_size
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'key'
)
self
.
value
=
tf
.
keras
.
layers
.
Dense
(
self
.
all_head_size
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'value'
)
self
.
dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
attention_probs_dropout_prob
)
...
...
@@ -260,7 +260,7 @@ class TFBertSelfOutput(tf.keras.layers.Layer):
def
__init__
(
self
,
config
,
**
kwargs
):
super
(
TFBertSelfOutput
,
self
).
__init__
(
**
kwargs
)
self
.
dense
=
tf
.
keras
.
layers
.
Dense
(
config
.
hidden_size
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'dense'
)
self
.
LayerNorm
=
tf
.
keras
.
layers
.
LayerNormalization
(
epsilon
=
config
.
layer_norm_eps
,
name
=
'LayerNorm'
)
self
.
dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
hidden_dropout_prob
)
...
...
@@ -296,7 +296,7 @@ class TFBertIntermediate(tf.keras.layers.Layer):
def
__init__
(
self
,
config
,
**
kwargs
):
super
(
TFBertIntermediate
,
self
).
__init__
(
**
kwargs
)
self
.
dense
=
tf
.
keras
.
layers
.
Dense
(
config
.
intermediate_size
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'dense'
)
if
isinstance
(
config
.
hidden_act
,
str
)
or
(
sys
.
version_info
[
0
]
==
2
and
isinstance
(
config
.
hidden_act
,
unicode
)):
self
.
intermediate_act_fn
=
ACT2FN
[
config
.
hidden_act
]
...
...
@@ -313,7 +313,7 @@ class TFBertOutput(tf.keras.layers.Layer):
def
__init__
(
self
,
config
,
**
kwargs
):
super
(
TFBertOutput
,
self
).
__init__
(
**
kwargs
)
self
.
dense
=
tf
.
keras
.
layers
.
Dense
(
config
.
hidden_size
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'dense'
)
self
.
LayerNorm
=
tf
.
keras
.
layers
.
LayerNormalization
(
epsilon
=
config
.
layer_norm_eps
,
name
=
'LayerNorm'
)
self
.
dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
hidden_dropout_prob
)
...
...
@@ -383,7 +383,7 @@ class TFBertPooler(tf.keras.layers.Layer):
def
__init__
(
self
,
config
,
**
kwargs
):
super
(
TFBertPooler
,
self
).
__init__
(
**
kwargs
)
self
.
dense
=
tf
.
keras
.
layers
.
Dense
(
config
.
hidden_size
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
activation
=
'tanh'
,
name
=
'dense'
)
...
...
@@ -399,7 +399,7 @@ class TFBertPredictionHeadTransform(tf.keras.layers.Layer):
def
__init__
(
self
,
config
,
**
kwargs
):
super
(
TFBertPredictionHeadTransform
,
self
).
__init__
(
**
kwargs
)
self
.
dense
=
tf
.
keras
.
layers
.
Dense
(
config
.
hidden_size
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'dense'
)
if
isinstance
(
config
.
hidden_act
,
str
)
or
(
sys
.
version_info
[
0
]
==
2
and
isinstance
(
config
.
hidden_act
,
unicode
)):
self
.
transform_act_fn
=
ACT2FN
[
config
.
hidden_act
]
...
...
@@ -452,7 +452,7 @@ class TFBertNSPHead(tf.keras.layers.Layer):
def
__init__
(
self
,
config
,
**
kwargs
):
super
(
TFBertNSPHead
,
self
).
__init__
(
**
kwargs
)
self
.
seq_relationship
=
tf
.
keras
.
layers
.
Dense
(
2
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'seq_relationship'
)
def
call
(
self
,
pooled_output
):
...
...
@@ -843,7 +843,7 @@ class TFBertForSequenceClassification(TFBertPreTrainedModel):
self
.
bert
=
TFBertMainLayer
(
config
,
name
=
'bert'
)
self
.
dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
hidden_dropout_prob
)
self
.
classifier
=
tf
.
keras
.
layers
.
Dense
(
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'classifier'
)
def
call
(
self
,
inputs
,
**
kwargs
):
...
...
@@ -895,7 +895,7 @@ class TFBertForMultipleChoice(TFBertPreTrainedModel):
self
.
bert
=
TFBertMainLayer
(
config
,
name
=
'bert'
)
self
.
dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
hidden_dropout_prob
)
self
.
classifier
=
tf
.
keras
.
layers
.
Dense
(
1
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'classifier'
)
def
call
(
self
,
inputs
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
training
=
False
):
...
...
@@ -974,7 +974,7 @@ class TFBertForTokenClassification(TFBertPreTrainedModel):
self
.
bert
=
TFBertMainLayer
(
config
,
name
=
'bert'
)
self
.
dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
hidden_dropout_prob
)
self
.
classifier
=
tf
.
keras
.
layers
.
Dense
(
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'classifier'
)
def
call
(
self
,
inputs
,
**
kwargs
):
...
...
@@ -1026,7 +1026,7 @@ class TFBertForQuestionAnswering(TFBertPreTrainedModel):
self
.
bert
=
TFBertMainLayer
(
config
,
name
=
'bert'
)
self
.
qa_outputs
=
tf
.
keras
.
layers
.
Dense
(
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
self
.
config
.
initializer_range
),
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'qa_outputs'
)
def
call
(
self
,
inputs
,
**
kwargs
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment