Commit 7c0baf95 authored by thomwolf's avatar thomwolf
Browse files

test suite independent of framework

parent 7775a3d2
...@@ -10,7 +10,7 @@ jobs: ...@@ -10,7 +10,7 @@ jobs:
- checkout - checkout
- run: sudo pip install torch - run: sudo pip install torch
- run: sudo pip install --progress-bar off . - run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov - run: sudo pip install pytest==5.0.1 codecov pytest-cov
- run: sudo pip install tensorboardX scikit-learn - run: sudo pip install tensorboardX scikit-learn
- run: python -m pytest -sv ./pytorch_transformers/tests/ --cov - run: python -m pytest -sv ./pytorch_transformers/tests/ --cov
- run: python -m pytest -sv ./examples/ - run: python -m pytest -sv ./examples/
...@@ -25,10 +25,9 @@ jobs: ...@@ -25,10 +25,9 @@ jobs:
- checkout - checkout
- run: sudo pip install tensorflow==2.0.0-rc0 - run: sudo pip install tensorflow==2.0.0-rc0
- run: sudo pip install --progress-bar off . - run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov - run: sudo pip install pytest==5.0.1 codecov pytest-cov
- run: sudo pip install tensorboardX scikit-learn - run: sudo pip install tensorboardX scikit-learn
- run: python -m pytest -sv ./pytorch_transformers/tests/ --cov - run: python -m pytest -sv ./pytorch_transformers/tests/ --cov
- run: python -m pytest -sv ./examples/
- run: codecov - run: codecov
build_py2_torch: build_py2_torch:
working_directory: ~/pytorch-transformers working_directory: ~/pytorch-transformers
...@@ -40,7 +39,7 @@ jobs: ...@@ -40,7 +39,7 @@ jobs:
- checkout - checkout
- run: sudo pip install torch - run: sudo pip install torch
- run: sudo pip install --progress-bar off . - run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov - run: sudo pip install pytest==5.0.1 codecov pytest-cov
- run: python -m pytest -sv ./pytorch_transformers/tests/ --cov - run: python -m pytest -sv ./pytorch_transformers/tests/ --cov
- run: codecov - run: codecov
build_py2_tf: build_py2_tf:
...@@ -53,7 +52,7 @@ jobs: ...@@ -53,7 +52,7 @@ jobs:
- checkout - checkout
- run: sudo pip install tensorflow==2.0.0-rc0 - run: sudo pip install tensorflow==2.0.0-rc0
- run: sudo pip install --progress-bar off . - run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov - run: sudo pip install pytest==5.0.1 codecov pytest-cov
- run: python -m pytest -sv ./pytorch_transformers/tests/ --cov - run: python -m pytest -sv ./pytorch_transformers/tests/ --cov
- run: codecov - run: codecov
deploy_doc: deploy_doc:
......
...@@ -43,11 +43,11 @@ from .configuration_distilbert import DistilBertConfig, DISTILBERT_PRETRAINED_CO ...@@ -43,11 +43,11 @@ from .configuration_distilbert import DistilBertConfig, DISTILBERT_PRETRAINED_CO
# Modeling # Modeling
try: try:
import torch import torch
torch_available = True # pylint: disable=invalid-name _torch_available = True # pylint: disable=invalid-name
except ImportError: except ImportError:
torch_available = False # pylint: disable=invalid-name _torch_available = False # pylint: disable=invalid-name
if torch_available: if _torch_available:
logger.info("PyTorch version {} available.".format(torch.__version__)) logger.info("PyTorch version {} available.".format(torch.__version__))
from .modeling_utils import (PreTrainedModel, prune_layer, Conv1D) from .modeling_utils import (PreTrainedModel, prune_layer, Conv1D)
...@@ -87,19 +87,26 @@ if torch_available: ...@@ -87,19 +87,26 @@ if torch_available:
# TensorFlow # TensorFlow
try: try:
import tensorflow as tf import tensorflow as tf
tf_available = True # pylint: disable=invalid-name assert int(tf.__version__[0]) >= 2
_tf_available = True # pylint: disable=invalid-name
except ImportError: except ImportError:
tf_available = False # pylint: disable=invalid-name _tf_available = False # pylint: disable=invalid-name
if tf_available: if _tf_available:
logger.info("TensorFlow version {} available.".format(tf.__version__)) logger.info("TensorFlow version {} available.".format(tf.__version__))
from .modeling_tf_utils import TFPreTrainedModel from .modeling_tf_utils import TFPreTrainedModel
from .modeling_tf_bert import (TFBertPreTrainedModel, TFBertModel, TFBertForPreTraining, from .modeling_tf_bert import (TFBertPreTrainedModel, TFBertModel, TFBertForPreTraining,
TFBertForMaskedLM, TFBertForNextSentencePrediction, load_pt_weights_in_bert) TFBertForMaskedLM, TFBertForNextSentencePrediction, load_bert_pt_weights_in_tf)
# Files and general utilities # Files and general utilities
from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE, from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE,
cached_path, add_start_docstrings, add_end_docstrings, cached_path, add_start_docstrings, add_end_docstrings,
WEIGHTS_NAME, TF_WEIGHTS_NAME, CONFIG_NAME) WEIGHTS_NAME, TF_WEIGHTS_NAME, CONFIG_NAME)
def is_torch_available():
return _torch_available
def is_tf_available():
return _tf_available
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Convert BERT checkpoint.""" """ Convert pytorch checkpoints to TensorFlow """
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
...@@ -21,19 +21,22 @@ from __future__ import print_function ...@@ -21,19 +21,22 @@ from __future__ import print_function
import argparse import argparse
import tensorflow as tf import tensorflow as tf
from pytorch_transformers import BertConfig, TFBertForPreTraining, load_pt_weights_in_bert from pytorch_transformers import BertConfig, TFBertForPreTraining, load_bert_pt_weights_in_tf
import logging import logging
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
def convert_bert_checkpoint_to_tf(pytorch_checkpoint_path, bert_config_file, tf_dump_path): def convert_pt_checkpoint_to_tf(model_type, pytorch_checkpoint_path, config_file, tf_dump_path):
# Initialise TF model if model_type == 'bert':
config = BertConfig.from_json_file(bert_config_file) # Initialise TF model
print("Building TensorFlow model from configuration: {}".format(str(config))) config = BertConfig.from_json_file(config_file)
model = TFBertForPreTraining(config) print("Building TensorFlow model from configuration: {}".format(str(config)))
model = TFBertForPreTraining(config)
# Load weights from tf checkpoint # Load weights from tf checkpoint
model = load_pt_weights_in_bert(model, config, pytorch_checkpoint_path) model = load_bert_pt_weights_in_tf(model, config, pytorch_checkpoint_path)
else:
raise ValueError("Unrecognized model type, should be one of ['bert'].")
# Save pytorch-model # Save pytorch-model
print("Save TensorFlow model to {}".format(tf_dump_path)) print("Save TensorFlow model to {}".format(tf_dump_path))
...@@ -43,16 +46,21 @@ def convert_bert_checkpoint_to_tf(pytorch_checkpoint_path, bert_config_file, tf_ ...@@ -43,16 +46,21 @@ def convert_bert_checkpoint_to_tf(pytorch_checkpoint_path, bert_config_file, tf_
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
## Required parameters ## Required parameters
parser.add_argument("--model_type",
default = None,
type = str,
required = True,
help = "Model type selcted in the list of.")
parser.add_argument("--pytorch_checkpoint_path", parser.add_argument("--pytorch_checkpoint_path",
default = None, default = None,
type = str, type = str,
required = True, required = True,
help = "Path to the PyTorch checkpoint path.") help = "Path to the PyTorch checkpoint path.")
parser.add_argument("--bert_config_file", parser.add_argument("--config_file",
default = None, default = None,
type = str, type = str,
required = True, required = True,
help = "The config json file corresponding to the pre-trained BERT model. \n" help = "The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture.") "This specifies the model architecture.")
parser.add_argument("--tf_dump_path", parser.add_argument("--tf_dump_path",
default = None, default = None,
...@@ -60,6 +68,7 @@ if __name__ == "__main__": ...@@ -60,6 +68,7 @@ if __name__ == "__main__":
required = True, required = True,
help = "Path to the output Tensorflow dump file.") help = "Path to the output Tensorflow dump file.")
args = parser.parse_args() args = parser.parse_args()
convert_bert_checkpoint_to_tf(args.pytorch_checkpoint_path, convert_pt_checkpoint_to_tf(args.model_type.lower(),
args.bert_config_file, args.pytorch_checkpoint_path,
args.tf_dump_path) args.config_file,
args.tf_dump_path)
This diff is collapsed.
...@@ -21,15 +21,18 @@ import shutil ...@@ -21,15 +21,18 @@ import shutil
import pytest import pytest
import logging import logging
from pytorch_transformers import (AutoConfig, BertConfig, try:
AutoModel, BertModel, from pytorch_transformers import (AutoConfig, BertConfig,
AutoModelWithLMHead, BertForMaskedLM, AutoModel, BertModel,
AutoModelForSequenceClassification, BertForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM,
AutoModelForQuestionAnswering, BertForQuestionAnswering) AutoModelForSequenceClassification, BertForSequenceClassification,
from pytorch_transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP AutoModelForQuestionAnswering, BertForQuestionAnswering)
from pytorch_transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
class AutoModelTest(unittest.TestCase): class AutoModelTest(unittest.TestCase):
......
...@@ -20,21 +20,26 @@ import unittest ...@@ -20,21 +20,26 @@ import unittest
import shutil import shutil
import pytest import pytest
from pytorch_transformers import (BertConfig, BertModel, BertForMaskedLM, from pytorch_transformers import is_torch_available
BertForNextSentencePrediction, BertForPreTraining,
BertForQuestionAnswering, BertForSequenceClassification,
BertForTokenClassification, BertForMultipleChoice)
from pytorch_transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
try:
from pytorch_transformers import (BertConfig, BertModel, BertForMaskedLM,
BertForNextSentencePrediction, BertForPreTraining,
BertForQuestionAnswering, BertForSequenceClassification,
BertForTokenClassification, BertForMultipleChoice)
from pytorch_transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
class BertModelTest(CommonTestCases.CommonModelTester): class BertModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (BertModel, BertForMaskedLM, BertForNextSentencePrediction, all_model_classes = (BertModel, BertForMaskedLM, BertForNextSentencePrediction,
BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification,
BertForTokenClassification) BertForTokenClassification) if is_torch_available() else ()
class BertModelTester(object): class BertModelTester(object):
......
...@@ -25,12 +25,16 @@ import uuid ...@@ -25,12 +25,16 @@ import uuid
import unittest import unittest
import logging import logging
import pytest
import torch try:
import torch
from pytorch_transformers import (PretrainedConfig, PreTrainedModel, from pytorch_transformers import (PretrainedConfig, PreTrainedModel,
BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP, BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
GPT2LMHeadModel, GPT2Config, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP) GPT2LMHeadModel, GPT2Config, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP)
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
def _config_zero_init(config): def _config_zero_init(config):
......
...@@ -17,9 +17,15 @@ from __future__ import division ...@@ -17,9 +17,15 @@ from __future__ import division
from __future__ import print_function from __future__ import print_function
import unittest import unittest
import pytest
from pytorch_transformers import (DistilBertConfig, DistilBertModel, DistilBertForMaskedLM, from pytorch_transformers import is_torch_available
DistilBertForQuestionAnswering, DistilBertForSequenceClassification)
try:
from pytorch_transformers import (DistilBertConfig, DistilBertModel, DistilBertForMaskedLM,
DistilBertForQuestionAnswering, DistilBertForSequenceClassification)
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
...@@ -28,7 +34,7 @@ from .configuration_common_test import ConfigTester ...@@ -28,7 +34,7 @@ from .configuration_common_test import ConfigTester
class DistilBertModelTest(CommonTestCases.CommonModelTester): class DistilBertModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (DistilBertModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, all_model_classes = (DistilBertModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering,
DistilBertForSequenceClassification) DistilBertForSequenceClassification) if is_torch_available() else None
test_pruning = True test_pruning = True
test_torchscript = True test_torchscript = True
test_resize_embeddings = True test_resize_embeddings = True
......
...@@ -20,9 +20,13 @@ import unittest ...@@ -20,9 +20,13 @@ import unittest
import pytest import pytest
import shutil import shutil
from pytorch_transformers import is_torch_available
from pytorch_transformers import (GPT2Config, GPT2Model, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, try:
GPT2LMHeadModel, GPT2DoubleHeadsModel) from pytorch_transformers import (GPT2Config, GPT2Model, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
GPT2LMHeadModel, GPT2DoubleHeadsModel)
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
...@@ -30,7 +34,7 @@ from .configuration_common_test import ConfigTester ...@@ -30,7 +34,7 @@ from .configuration_common_test import ConfigTester
class GPT2ModelTest(CommonTestCases.CommonModelTester): class GPT2ModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel) all_model_classes = (GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
class GPT2ModelTester(object): class GPT2ModelTester(object):
......
...@@ -20,9 +20,13 @@ import unittest ...@@ -20,9 +20,13 @@ import unittest
import pytest import pytest
import shutil import shutil
from pytorch_transformers import is_torch_available
from pytorch_transformers import (OpenAIGPTConfig, OpenAIGPTModel, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, try:
OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) from pytorch_transformers import (OpenAIGPTConfig, OpenAIGPTModel, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel)
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
...@@ -30,7 +34,7 @@ from .configuration_common_test import ConfigTester ...@@ -30,7 +34,7 @@ from .configuration_common_test import ConfigTester
class OpenAIGPTModelTest(CommonTestCases.CommonModelTester): class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) all_model_classes = (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) if is_torch_available() else ()
class OpenAIGPTModelTester(object): class OpenAIGPTModelTester(object):
......
...@@ -19,10 +19,15 @@ from __future__ import print_function ...@@ -19,10 +19,15 @@ from __future__ import print_function
import unittest import unittest
import shutil import shutil
import pytest import pytest
import torch
from pytorch_transformers import (RobertaConfig, RobertaModel, RobertaForMaskedLM, RobertaForSequenceClassification) from pytorch_transformers import is_torch_available
from pytorch_transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
try:
import torch
from pytorch_transformers import (RobertaConfig, RobertaModel, RobertaForMaskedLM, RobertaForSequenceClassification)
from pytorch_transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
...@@ -30,7 +35,7 @@ from .configuration_common_test import ConfigTester ...@@ -30,7 +35,7 @@ from .configuration_common_test import ConfigTester
class RobertaModelTest(CommonTestCases.CommonModelTester): class RobertaModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (RobertaForMaskedLM, RobertaModel) all_model_classes = (RobertaForMaskedLM, RobertaModel) if is_torch_available() else ()
class RobertaModelTester(object): class RobertaModelTester(object):
......
...@@ -24,21 +24,27 @@ import sys ...@@ -24,21 +24,27 @@ import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor) from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
from pytorch_transformers import BertConfig, is_tf_available
try: try:
import tensorflow as tf import tensorflow as tf
from pytorch_transformers.modeling_tf_bert import (TFBertModel, TFBertForMaskedLM,
from pytorch_transformers import (BertConfig) TFBertForNextSentencePrediction,
from pytorch_transformers.modeling_tf_bert import TFBertModel, TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP TFBertForPreTraining,
TFBertForSequenceClassification,
TFBertForMultipleChoice,
TFBertForTokenClassification,
TFBertForQuestionAnswering,
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP)
except ImportError: except ImportError:
pass pytestmark = pytest.mark.skip("Require TensorFlow")
class TFBertModelTest(TFCommonTestCases.TFCommonModelTester): class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFBertModel,) all_model_classes = (TFBertModel, TFBertForMaskedLM, TFBertForNextSentencePrediction,
# BertForMaskedLM, BertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification,
# BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, TFBertForTokenClassification) if is_tf_available() else ()
# BertForTokenClassification)
class TFBertModelTester(object): class TFBertModelTester(object):
...@@ -123,14 +129,8 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester): ...@@ -123,14 +129,8 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def check_loss_output(self, result):
self.parent.assertListEqual(
list(result["loss"].size()),
[])
def create_and_check_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = TFBertModel(config=config) model = TFBertModel(config=config)
# model.eval()
inputs = {'input_ids': input_ids, inputs = {'input_ids': input_ids,
'attention_mask': input_mask, 'attention_mask': input_mask,
'token_type_ids': token_type_ids} 'token_type_ids': token_type_ids}
...@@ -152,125 +152,115 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester): ...@@ -152,125 +152,115 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
def create_and_check_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
pass model = TFBertForMaskedLM(config=config)
# model = BertForMaskedLM(config=config) inputs = {'input_ids': input_ids,
# model.eval() 'attention_mask': input_mask,
# loss, prediction_scores = model(input_ids, token_type_ids, input_mask, token_labels) 'token_type_ids': token_type_ids}
# result = { prediction_scores, = model(inputs)
# "loss": loss, result = {
# "prediction_scores": prediction_scores, "prediction_scores": prediction_scores.numpy(),
# } }
# self.parent.assertListEqual( self.parent.assertListEqual(
# list(result["prediction_scores"].size()), list(result["prediction_scores"].shape),
# [self.batch_size, self.seq_length, self.vocab_size]) [self.batch_size, self.seq_length, self.vocab_size])
# self.check_loss_output(result)
def create_and_check_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
pass model = TFBertForNextSentencePrediction(config=config)
# model = BertForNextSentencePrediction(config=config) inputs = {'input_ids': input_ids,
# model.eval() 'attention_mask': input_mask,
# loss, seq_relationship_score = model(input_ids, token_type_ids, input_mask, sequence_labels) 'token_type_ids': token_type_ids}
# result = { seq_relationship_score, = model(inputs)
# "loss": loss, result = {
# "seq_relationship_score": seq_relationship_score, "seq_relationship_score": seq_relationship_score.numpy(),
# } }
# self.parent.assertListEqual( self.parent.assertListEqual(
# list(result["seq_relationship_score"].size()), list(result["seq_relationship_score"].shape),
# [self.batch_size, 2]) [self.batch_size, 2])
# self.check_loss_output(result)
def create_and_check_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
pass model = TFBertForPreTraining(config=config)
# model = BertForPreTraining(config=config) inputs = {'input_ids': input_ids,
# model.eval() 'attention_mask': input_mask,
# loss, prediction_scores, seq_relationship_score = model(input_ids, token_type_ids, input_mask, token_labels, sequence_labels) 'token_type_ids': token_type_ids}
# result = { prediction_scores, seq_relationship_score = model(inputs)
# "loss": loss, result = {
# "prediction_scores": prediction_scores, "prediction_scores": prediction_scores.numpy(),
# "seq_relationship_score": seq_relationship_score, "seq_relationship_score": seq_relationship_score.numpy(),
# } }
# self.parent.assertListEqual( self.parent.assertListEqual(
# list(result["prediction_scores"].size()), list(result["prediction_scores"].shape),
# [self.batch_size, self.seq_length, self.vocab_size]) [self.batch_size, self.seq_length, self.vocab_size])
# self.parent.assertListEqual( self.parent.assertListEqual(
# list(result["seq_relationship_score"].size()), list(result["seq_relationship_score"].shape),
# [self.batch_size, 2]) [self.batch_size, 2])
# self.check_loss_output(result)
def create_and_check_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
pass config.num_labels = self.num_labels
# model = BertForQuestionAnswering(config=config) model = TFBertForSequenceClassification(config=config)
# model.eval() inputs = {'input_ids': input_ids,
# loss, start_logits, end_logits = model(input_ids, token_type_ids, input_mask, sequence_labels, sequence_labels) 'attention_mask': input_mask,
# result = { 'token_type_ids': token_type_ids}
# "loss": loss, logits, = model(inputs)
# "start_logits": start_logits, result = {
# "end_logits": end_logits, "logits": logits.numpy(),
# } }
# self.parent.assertListEqual( self.parent.assertListEqual(
# list(result["start_logits"].size()), list(result["logits"].shape),
# [self.batch_size, self.seq_length]) [self.batch_size, self.num_labels])
# self.parent.assertListEqual(
# list(result["end_logits"].size()),
# [self.batch_size, self.seq_length])
# self.check_loss_output(result)
def create_and_check_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_bert_for_multiple_choice(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
pass config.num_choices = self.num_choices
# config.num_labels = self.num_labels model = TFBertForMultipleChoice(config=config)
# model = BertForSequenceClassification(config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
# model.eval() multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
# loss, logits = model(input_ids, token_type_ids, input_mask, sequence_labels) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
# result = { inputs = {'input_ids': multiple_choice_inputs_ids,
# "loss": loss, 'attention_mask': multiple_choice_input_mask,
# "logits": logits, 'token_type_ids': multiple_choice_token_type_ids}
# } logits, = model(inputs)
# self.parent.assertListEqual( result = {
# list(result["logits"].size()), "logits": logits.numpy(),
# [self.batch_size, self.num_labels]) }
# self.check_loss_output(result) self.parent.assertListEqual(
list(result["logits"].shape),
[self.batch_size, self.num_choices])
def create_and_check_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
pass config.num_labels = self.num_labels
# config.num_labels = self.num_labels model = TFBertForTokenClassification(config=config)
# model = BertForTokenClassification(config=config) inputs = {'input_ids': input_ids,
# model.eval() 'attention_mask': input_mask,
# loss, logits = model(input_ids, token_type_ids, input_mask, token_labels) 'token_type_ids': token_type_ids}
# result = { logits, = model(inputs)
# "loss": loss, result = {
# "logits": logits, "logits": logits.numpy(),
# } }
# self.parent.assertListEqual( self.parent.assertListEqual(
# list(result["logits"].size()), list(result["logits"].shape),
# [self.batch_size, self.seq_length, self.num_labels]) [self.batch_size, self.seq_length, self.num_labels])
# self.check_loss_output(result)
def create_and_check_bert_for_multiple_choice(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
pass model = TFBertForQuestionAnswering(config=config)
# config.num_choices = self.num_choices inputs = {'input_ids': input_ids,
# model = BertForMultipleChoice(config=config) 'attention_mask': input_mask,
# model.eval() 'token_type_ids': token_type_ids}
# multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() start_logits, end_logits = model(inputs)
# multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = {
# multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() "start_logits": start_logits.numpy(),
# loss, logits = model(multiple_choice_inputs_ids, "end_logits": end_logits.numpy(),
# multiple_choice_token_type_ids, }
# multiple_choice_input_mask, self.parent.assertListEqual(
# choice_labels) list(result["start_logits"].shape),
# result = { [self.batch_size, self.seq_length])
# "loss": loss, self.parent.assertListEqual(
# "logits": logits, list(result["end_logits"].shape),
# } [self.batch_size, self.seq_length])
# self.parent.assertListEqual(
# list(result["logits"].size()),
# [self.batch_size, self.num_choices])
# self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self): def prepare_config_and_inputs_for_common(self):
...@@ -287,48 +277,39 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester): ...@@ -287,48 +277,39 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
def test_config(self): def test_config(self):
self.config_tester.run_common_tests() self.config_tester.run_common_tests()
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_bert_model(self): def test_bert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_model(*config_and_inputs) self.model_tester.create_and_check_bert_model(*config_and_inputs)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_for_masked_lm(self): def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs) self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_for_multiple_choice(self): def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs) self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_for_next_sequence_prediction(self): def test_for_next_sequence_prediction(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs) self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_for_pretraining(self): def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs) self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_for_question_answering(self): def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs) self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_for_sequence_classification(self): def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs) self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_for_token_classification(self): def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs) self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)
@pytest.mark.slow @pytest.mark.slow
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/" cache_dir = "/tmp/pytorch_transformers_test/"
for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
...@@ -30,7 +30,7 @@ try: ...@@ -30,7 +30,7 @@ try:
from pytorch_transformers import TFPreTrainedModel from pytorch_transformers import TFPreTrainedModel
# from pytorch_transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP # from pytorch_transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP
except ImportError: except ImportError:
pass pytestmark = pytest.mark.skip("Require TensorFlow")
def _config_zero_init(config): def _config_zero_init(config):
...@@ -50,7 +50,6 @@ class TFCommonTestCases: ...@@ -50,7 +50,6 @@ class TFCommonTestCases:
test_pruning = True test_pruning = True
test_resize_embeddings = True test_resize_embeddings = True
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_initialization(self): def test_initialization(self):
pass pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...@@ -64,7 +63,6 @@ class TFCommonTestCases: ...@@ -64,7 +63,6 @@ class TFCommonTestCases:
# msg="Parameter {} of model {} seems not properly initialized".format(name, model_class)) # msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_attention_outputs(self): def test_attention_outputs(self):
pass pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...@@ -105,7 +103,6 @@ class TFCommonTestCases: ...@@ -105,7 +103,6 @@ class TFCommonTestCases:
# self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length]) # self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length])
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_headmasking(self): def test_headmasking(self):
pass pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...@@ -153,7 +150,6 @@ class TFCommonTestCases: ...@@ -153,7 +150,6 @@ class TFCommonTestCases:
# attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0) # attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_head_pruning(self): def test_head_pruning(self):
pass pass
# if not self.test_pruning: # if not self.test_pruning:
...@@ -181,7 +177,6 @@ class TFCommonTestCases: ...@@ -181,7 +177,6 @@ class TFCommonTestCases:
# attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) # attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_hidden_states_output(self): def test_hidden_states_output(self):
pass pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...@@ -201,7 +196,6 @@ class TFCommonTestCases: ...@@ -201,7 +196,6 @@ class TFCommonTestCases:
# [self.model_tester.seq_length, self.model_tester.hidden_size]) # [self.model_tester.seq_length, self.model_tester.hidden_size])
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_resize_tokens_embeddings(self): def test_resize_tokens_embeddings(self):
pass pass
# original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...@@ -238,7 +232,6 @@ class TFCommonTestCases: ...@@ -238,7 +232,6 @@ class TFCommonTestCases:
# self.assertTrue(models_equal) # self.assertTrue(models_equal)
@pytest.mark.skipif('tensorflow' not in sys.modules, reason="requires TensorFlow")
def test_tie_model_weights(self): def test_tie_model_weights(self):
pass pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
......
...@@ -21,17 +21,21 @@ import random ...@@ -21,17 +21,21 @@ import random
import shutil import shutil
import pytest import pytest
import torch from pytorch_transformers import is_torch_available
from pytorch_transformers import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel) try:
from pytorch_transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP import torch
from pytorch_transformers import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel)
from pytorch_transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
class TransfoXLModelTest(CommonTestCases.CommonModelTester): class TransfoXLModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else ()
test_pruning = False test_pruning = False
test_torchscript = False test_torchscript = False
test_resize_embeddings = False test_resize_embeddings = False
......
...@@ -20,8 +20,14 @@ import unittest ...@@ -20,8 +20,14 @@ import unittest
import shutil import shutil
import pytest import pytest
from pytorch_transformers import (XLMConfig, XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification) from pytorch_transformers import is_torch_available
from pytorch_transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_MAP
try:
from pytorch_transformers import (XLMConfig, XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering,
XLMForSequenceClassification)
from pytorch_transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_MAP
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
...@@ -29,9 +35,9 @@ from .configuration_common_test import ConfigTester ...@@ -29,9 +35,9 @@ from .configuration_common_test import ConfigTester
class XLMModelTest(CommonTestCases.CommonModelTester): class XLMModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (XLMModel, XLMWithLMHeadModel, all_model_classes = (XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering,
XLMForQuestionAnswering, XLMForSequenceClassification) XLMForSequenceClassification) if is_torch_available() else ()
# , XLMForSequenceClassification, XLMForTokenClassification),
class XLMModelTester(object): class XLMModelTester(object):
......
...@@ -23,10 +23,15 @@ import random ...@@ -23,10 +23,15 @@ import random
import shutil import shutil
import pytest import pytest
import torch from pytorch_transformers import is_torch_available
from pytorch_transformers import (XLNetConfig, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering) try:
from pytorch_transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_MAP import torch
from pytorch_transformers import (XLNetConfig, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering)
from pytorch_transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
...@@ -34,7 +39,7 @@ from .configuration_common_test import ConfigTester ...@@ -34,7 +39,7 @@ from .configuration_common_test import ConfigTester
class XLNetModelTest(CommonTestCases.CommonModelTester): class XLNetModelTest(CommonTestCases.CommonModelTester):
all_model_classes=(XLNetModel, XLNetLMHeadModel, all_model_classes=(XLNetModel, XLNetLMHeadModel,
XLNetForSequenceClassification, XLNetForQuestionAnswering) XLNetForSequenceClassification, XLNetForQuestionAnswering) if is_torch_available() else ()
test_pruning = False test_pruning = False
class XLNetModelTester(object): class XLNetModelTester(object):
......
...@@ -18,11 +18,17 @@ from __future__ import print_function ...@@ -18,11 +18,17 @@ from __future__ import print_function
import unittest import unittest
import os import os
import pytest
import torch from pytorch_transformers import is_torch_available
from pytorch_transformers import (AdamW, ConstantLRSchedule, WarmupConstantSchedule, try:
WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule) import torch
from pytorch_transformers import (AdamW, ConstantLRSchedule, WarmupConstantSchedule,
WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule)
except ImportError:
pytestmark = pytest.mark.skip("Require Torch")
from .tokenization_tests_commons import TemporaryDirectory from .tokenization_tests_commons import TemporaryDirectory
...@@ -71,8 +77,8 @@ class OptimizationTest(unittest.TestCase): ...@@ -71,8 +77,8 @@ class OptimizationTest(unittest.TestCase):
class ScheduleInitTest(unittest.TestCase): class ScheduleInitTest(unittest.TestCase):
m = torch.nn.Linear(50, 50) m = torch.nn.Linear(50, 50) if is_torch_available() else None
optimizer = AdamW(m.parameters(), lr=10.) optimizer = AdamW(m.parameters(), lr=10.) if is_torch_available() else None
num_steps = 10 num_steps = 10
def assertListAlmostEqual(self, list1, list2, tol): def assertListAlmostEqual(self, list1, list2, tol):
......
...@@ -22,20 +22,19 @@ import pytest ...@@ -22,20 +22,19 @@ import pytest
import logging import logging
from pytorch_transformers import AutoTokenizer, BertTokenizer, AutoTokenizer, GPT2Tokenizer from pytorch_transformers import AutoTokenizer, BertTokenizer, AutoTokenizer, GPT2Tokenizer
from pytorch_transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP from pytorch_transformers import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
from pytorch_transformers.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
class AutoTokenizerTest(unittest.TestCase): class AutoTokenizerTest(unittest.TestCase):
def test_tokenizer_from_pretrained(self): def test_tokenizer_from_pretrained(self):
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in list(BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys())[:1]:
tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer) self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, BertTokenizer) self.assertIsInstance(tokenizer, BertTokenizer)
self.assertGreater(len(tokenizer), 0) self.assertGreater(len(tokenizer), 0)
for model_name in list(GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in list(GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys())[:1]:
tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer) self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, GPT2Tokenizer) self.assertIsInstance(tokenizer, GPT2Tokenizer)
......
...@@ -16,15 +16,21 @@ from __future__ import absolute_import, division, print_function, unicode_litera ...@@ -16,15 +16,21 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import os import os
import unittest import unittest
import pytest
from io import open from io import open
from pytorch_transformers.tokenization_transfo_xl import TransfoXLTokenizer, VOCAB_FILES_NAMES from pytorch_transformers import is_torch_available
from.tokenization_tests_commons import CommonTestCases try:
from pytorch_transformers.tokenization_transfo_xl import TransfoXLTokenizer, VOCAB_FILES_NAMES
except ImportError:
pytestmark = pytest.mark.skip("Require Torch") # TODO: untangle Transfo-XL tokenizer from torch.load and torch.save
from .tokenization_tests_commons import CommonTestCases
class TransfoXLTokenizationTest(CommonTestCases.CommonTokenizerTester): class TransfoXLTokenizationTest(CommonTestCases.CommonTokenizerTester):
tokenizer_class = TransfoXLTokenizer tokenizer_class = TransfoXLTokenizer if is_torch_available() else None
def setUp(self): def setUp(self):
super(TransfoXLTokenizationTest, self).setUp() super(TransfoXLTokenizationTest, self).setUp()
......
...@@ -26,16 +26,20 @@ import sys ...@@ -26,16 +26,20 @@ import sys
from collections import Counter, OrderedDict from collections import Counter, OrderedDict
from io import open from io import open
import torch
import numpy as np import numpy as np
from .file_utils import cached_path from .file_utils import cached_path
from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils import PreTrainedTokenizer
if sys.version_info[0] == 2: try:
import cPickle as pickle import torch
else: except ImportError:
import pickle pass
# if sys.version_info[0] == 2:
# import cPickle as pickle
# else:
# import pickle
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment