"docs/source/vscode:/vscode.git/clone" did not exist on "d155b38d6ea70fef3dec2e1f678269e713672bb7"
Commit 7bddbf59 authored by Lysandre's avatar Lysandre Committed by Lysandre Debut
Browse files

TFAlbertForSequenceClassification

parent f6f38253
......@@ -479,16 +479,15 @@ class TFAlbertMLMHead(tf.keras.layers.Layer):
ALBERT_START_DOCSTRING = r""" The ALBERT model was proposed in
`ALBERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
pre-trained using a combination of masked language modeling objective and next sentence prediction
on a large corpus comprising the Toronto Book Corpus and Wikipedia.
`ALBERT: A Lite BERT for Self-supervised Learning of Language Representations`_
by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. It presents
two parameter-reduction techniques to lower memory consumption and increase the trainig speed of BERT.
This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
refer to the TF 2.0 documentation for all matter related to general usage and behavior.
.. _`ALBERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
https://arxiv.org/abs/1810.04805
.. _`ALBERT: A Lite BERT for Self-supervised Learning of Language Representations`:
https://arxiv.org/abs/1909.11942
.. _`tf.keras.Model`:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model
......@@ -695,8 +694,8 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel):
import tensorflow as tf
from transformers import AlbertTokenizer, TFAlbertForMaskedLM
tokenizer = AlbertTokenizer.from_pretrained('bert-base-uncased')
model = TFAlbertForMaskedLM.from_pretrained('bert-base-uncased')
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = TFAlbertForMaskedLM.from_pretrained('albert-base-v2')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids)
prediction_scores = outputs[0]
......@@ -721,3 +720,54 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel):
outputs = (prediction_scores,) + outputs[2:]
return outputs # prediction_scores, (hidden_states), (attentions)
@add_start_docstrings("""Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
ALBERT_START_DOCSTRING, ALBERT_INPUTS_DOCSTRING)
class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**logits**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
import tensorflow as tf
from transformers import AlbertTokenizer, TFAlbertForSequenceClassification
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = TFAlbertForSequenceClassification.from_pretrained('albert-base-v2')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids)
logits = outputs[0]
"""
def __init__(self, config, *inputs, **kwargs):
super(TFAlbertForSequenceClassification, self).__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.albert = TFAlbertModel(config, name='albert')
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = tf.keras.layers.Dense(config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name='classifier')
def call(self, inputs, **kwargs):
outputs = self.albert(inputs, **kwargs)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=kwargs.get('training', False))
logits = self.classifier(pooled_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
return outputs # logits, (hidden_states), (attentions)
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment