Unverified Commit 7a787c68 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[Speech models] Disable non-existing chunking in tests (#15163)

parent 669e3c50
...@@ -425,6 +425,10 @@ class HubertModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -425,6 +425,10 @@ class HubertModelTest(ModelTesterMixin, unittest.TestCase):
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3) module.masked_spec_embed.data.fill_(3)
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
model = HubertModel.from_pretrained("facebook/hubert-base-ls960") model = HubertModel.from_pretrained("facebook/hubert-base-ls960")
...@@ -572,6 +576,10 @@ class HubertRobustModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -572,6 +576,10 @@ class HubertRobustModelTest(ModelTesterMixin, unittest.TestCase):
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3) module.masked_spec_embed.data.fill_(3)
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft") model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
......
...@@ -428,6 +428,10 @@ class SEWModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -428,6 +428,10 @@ class SEWModelTest(ModelTesterMixin, unittest.TestCase):
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3) module.masked_spec_embed.data.fill_(3)
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
model = SEWModel.from_pretrained("asapp/sew-tiny-100k") model = SEWModel.from_pretrained("asapp/sew-tiny-100k")
......
...@@ -441,6 +441,10 @@ class SEWDModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -441,6 +441,10 @@ class SEWDModelTest(ModelTesterMixin, unittest.TestCase):
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3) module.masked_spec_embed.data.fill_(3)
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k") model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k")
......
...@@ -518,6 +518,10 @@ class UniSpeechRobustModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -518,6 +518,10 @@ class UniSpeechRobustModelTest(ModelTesterMixin, unittest.TestCase):
self.assertEqual(logits.shape, (1, 1498, 32)) self.assertEqual(logits.shape, (1, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
model = UniSpeechModel.from_pretrained("microsoft/unispeech-large-1500h-cv") model = UniSpeechModel.from_pretrained("microsoft/unispeech-large-1500h-cv")
......
...@@ -541,6 +541,10 @@ class UniSpeechSatModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -541,6 +541,10 @@ class UniSpeechSatModelTest(ModelTesterMixin, unittest.TestCase):
self.assertEqual(logits.shape, (4, 1498, 32)) self.assertEqual(logits.shape, (4, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
model = UniSpeechSatModel.from_pretrained("microsoft/unispeech-sat-base-plus") model = UniSpeechSatModel.from_pretrained("microsoft/unispeech-sat-base-plus")
...@@ -776,6 +780,10 @@ class UniSpeechSatRobustModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -776,6 +780,10 @@ class UniSpeechSatRobustModelTest(ModelTesterMixin, unittest.TestCase):
self.assertEqual(logits.shape, (1, 1498, 32)) self.assertEqual(logits.shape, (1, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
model = UniSpeechSatModel.from_pretrained("microsoft/unispeech-sat-large") model = UniSpeechSatModel.from_pretrained("microsoft/unispeech-sat-large")
......
...@@ -605,6 +605,10 @@ class Wav2Vec2ModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -605,6 +605,10 @@ class Wav2Vec2ModelTest(ModelTesterMixin, unittest.TestCase):
self.assertEqual(logits.shape, (4, 1498, 32)) self.assertEqual(logits.shape, (4, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
...@@ -901,6 +905,10 @@ class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -901,6 +905,10 @@ class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
self.assertEqual(logits.shape, (1, 1498, 32)) self.assertEqual(logits.shape, (1, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment