Commit 7a035199 authored by LysandreJik's avatar LysandreJik
Browse files

Documentation

parent 33508ae3
...@@ -55,4 +55,81 @@ Example usage ...@@ -55,4 +55,81 @@ Example usage
^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^
An example using these processors is given in the An example using these processors is given in the
`run_glue.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_glue.py>`__ script. `run_glue.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_glue.py>`__ script.
\ No newline at end of file
SQuAD
~~~~~~~~~~~~~~~~~~~~~
`The Stanford Question Answering Dataset (SQuAD) <https://rajpurkar.github.io/SQuAD-explorer//>`__ is a benchmark that evaluates
the performance of models on question answering. Two versions are available, v1.1 and v2.0. The first version (v1.1) was released together with the paper
`SQuAD: 100,000+ Questions for Machine Comprehension of Text <https://arxiv.org/abs/1606.05250>`__. The second version (v2.0) was released alongside
the paper `Know What You Don't Know: Unanswerable Questions for SQuAD <https://arxiv.org/abs/1806.03822>`__.
This library hosts a processor for each of the two versions:
Processors
^^^^^^^^^^^^^^^^^^^^^^^^^
Those processors are:
- :class:`~transformers.data.processors.utils.SquadV1Processor`
- :class:`~transformers.data.processors.utils.SquadV2Processor`
They both inherit from the abstract class :class:`~transformers.data.processors.utils.SquadProcessor`
.. autoclass:: transformers.data.processors.squad.SquadProcessor
:members:
Additionally, the following method can be used to convert SQuAD examples into :class:`~transformers.data.processors.utils.SquadFeatures`
that can be used as model inputs.
.. automethod:: transformers.data.processors.squad.squad_convert_examples_to_features
These processors as well as the aforementionned method can be used with files containing the data as well as with the `tensorflow_datasets` package.
Examples are given below.
Example usage
^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example using the processors as well as the conversion method using data files:
Example::
# Loading a V2 processor
processor = SquadV2Processor()
examples = processor.get_dev_examples(squad_v2_data_dir)
# Loading a V1 processor
processor = SquadV1Processor()
examples = processor.get_dev_examples(squad_v1_data_dir)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
Using `tensorflow_datasets` is as easy as using a data file:
Example::
# tensorflow_datasets only handle Squad V1.
tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
Another example using these processors is given in the
`run_squad.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_squad.py>`__ script.
\ No newline at end of file
...@@ -74,7 +74,35 @@ def _is_whitespace(c): ...@@ -74,7 +74,35 @@ def _is_whitespace(c):
def squad_convert_examples_to_features(examples, tokenizer, max_seq_length, def squad_convert_examples_to_features(examples, tokenizer, max_seq_length,
doc_stride, max_query_length, is_training): doc_stride, max_query_length, is_training):
"""Loads a data file into a list of `InputBatch`s.""" """
Converts a list of examples into a list of features that can be directly given as input to a model.
It is model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs.
Args:
examples: list of :class:`~transformers.data.processors.squad.SquadExample`
tokenizer: an instance of a child of :class:`~transformers.PreTrainedTokenizer`
max_seq_length: The maximum sequence length of the inputs.
doc_stride: The stride used when the context is too large and is split across several features.
max_query_length: The maximum length of the query.
is_training: wheter to create features for model evaluation or model training.
Returns:
list of :class:`~transformers.data.processors.squad.SquadFeatures`
Example::
processor = SquadV2Processor()
examples = processor.get_dev_examples(data_dir)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate,
)
"""
# Defining helper methods # Defining helper methods
unique_id = 1000000000 unique_id = 1000000000
...@@ -240,12 +268,14 @@ def squad_convert_examples_to_features(examples, tokenizer, max_seq_length, ...@@ -240,12 +268,14 @@ def squad_convert_examples_to_features(examples, tokenizer, max_seq_length,
class SquadProcessor(DataProcessor): class SquadProcessor(DataProcessor):
"""Processor for the SQuAD data set.""" """
Processor for the SQuAD data set.
Overriden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and version 2.0 of SQuAD, respectively.
"""
train_file = None train_file = None
dev_file = None dev_file = None
def get_example_from_tensor_dict(self, tensor_dict, evaluate=False): def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False):
if not evaluate: if not evaluate:
answer = tensor_dict['answers']['text'][0].numpy().decode('utf-8') answer = tensor_dict['answers']['text'][0].numpy().decode('utf-8')
answer_start = tensor_dict['answers']['answer_start'][0].numpy() answer_start = tensor_dict['answers']['answer_start'][0].numpy()
...@@ -296,35 +326,44 @@ class SquadProcessor(DataProcessor): ...@@ -296,35 +326,44 @@ class SquadProcessor(DataProcessor):
examples = [] examples = []
for tensor_dict in tqdm(dataset): for tensor_dict in tqdm(dataset):
examples.append(self.get_example_from_tensor_dict(tensor_dict, evaluate=evaluate)) examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate))
return examples return examples
def get_train_examples(self, data_dir): def get_train_examples(self, data_dir, filename=None):
"""See base class.""" """
Returns the training examples from the data directory.
Args:
data_dir: Directory containing the data files used for training and evaluating.
filename: None by default, specify this if the training file has a different name than the original one
which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively.
"""
if self.train_file is None: if self.train_file is None:
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
with open(os.path.join(data_dir, self.train_file), "r", encoding='utf-8') as reader: with open(os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding='utf-8') as reader:
input_data = json.load(reader)["data"] input_data = json.load(reader)["data"]
return self._create_examples(input_data, "train") return self._create_examples(input_data, "train")
def get_dev_examples(self, data_dir): def get_dev_examples(self, data_dir, filename=None):
"""See base class.""" """
Returns the evaluation example from the data directory.
Args:
data_dir: Directory containing the data files used for training and evaluating.
filename: None by default, specify this if the evaluation file has a different name than the original one
which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively.
"""
if self.dev_file is None: if self.dev_file is None:
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
with open(os.path.join(data_dir, self.dev_file), "r", encoding='utf-8') as reader: with open(os.path.join(data_dir, self.dev_file if filename is not None else filename), "r", encoding='utf-8') as reader:
input_data = json.load(reader)["data"] input_data = json.load(reader)["data"]
return self._create_examples(input_data, "dev") return self._create_examples(input_data, "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, input_data, set_type): def _create_examples(self, input_data, set_type):
"""Creates examples for the training and dev sets."""
is_training = set_type == "train" is_training = set_type == "train"
examples = [] examples = []
for entry in tqdm(input_data): for entry in tqdm(input_data):
...@@ -378,6 +417,16 @@ class SquadV2Processor(SquadProcessor): ...@@ -378,6 +417,16 @@ class SquadV2Processor(SquadProcessor):
class SquadExample(object): class SquadExample(object):
""" """
A single training/test example for the Squad dataset, as loaded from disk. A single training/test example for the Squad dataset, as loaded from disk.
Args:
qas_id: The example's unique identifier
question_text: The question string
context_text: The context string
answer_text: The answer string
start_position_character: The character position of the start of the answer
title: The title of the example
answers: None by default, this is used during evaluation. Holds answers as well as their start positions.
is_impossible: False by default, set to True if the example has no possible answer.
""" """
def __init__(self, def __init__(self,
...@@ -427,7 +476,26 @@ class SquadExample(object): ...@@ -427,7 +476,26 @@ class SquadExample(object):
class SquadFeatures(object): class SquadFeatures(object):
""" """
Single squad example features to be fed to a model. Single squad example features to be fed to a model.
Those features are model-specific. Those features are model-specific and can be crafted from :class:`~transformers.data.processors.squad.SquadExample`
using the :method:`~transformers.data.processors.squad.squad_convert_examples_to_features` method.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
cls_index: the index of the CLS token.
p_mask: Mask identifying tokens that can be answers vs. tokens that cannot.
Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer
example_index: the index of the example
unique_id: The unique Feature identifier
paragraph_len: The length of the context
token_is_max_context: List of booleans identifying which tokens have their maximum context in this feature object.
If a token does not have their maximum context in this feature object, it means that another feature object
has more information related to that token and should be prioritized over this feature for that token.
tokens: list of tokens corresponding to the input ids
token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer.
start_position: start of the answer token index
end_position: end of the answer token index
""" """
def __init__(self, def __init__(self,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment