Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
77676c27
Commit
77676c27
authored
Dec 21, 2019
by
thomwolf
Browse files
adding positional embeds masking to TFRoBERTa
parent
5b7fb6a4
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
29 additions
and
7 deletions
+29
-7
transformers/modeling_tf_roberta.py
transformers/modeling_tf_roberta.py
+29
-7
No files found.
transformers/modeling_tf_roberta.py
View file @
77676c27
...
...
@@ -20,7 +20,6 @@ from __future__ import (absolute_import, division, print_function,
import
logging
import
numpy
as
np
import
tensorflow
as
tf
from
.configuration_roberta
import
RobertaConfig
...
...
@@ -46,17 +45,40 @@ class TFRobertaEmbeddings(TFBertEmbeddings):
super
(
TFRobertaEmbeddings
,
self
).
__init__
(
config
,
**
kwargs
)
self
.
padding_idx
=
1
def
create_position_ids_from_input_ids
(
self
,
x
):
""" Replace non-padding symbols with their position numbers. Position numbers begin at
padding_idx+1. Padding symbols are ignored. This is modified from fairseq's
`utils.make_positions`.
:param torch.Tensor x:
:return torch.Tensor:
"""
mask
=
tf
.
cast
(
tf
.
math
.
not_equal
(
x
,
self
.
padding_idx
),
dtype
=
tf
.
int32
)
incremental_indicies
=
tf
.
math
.
cumsum
(
mask
,
axis
=
1
)
*
mask
return
incremental_indicies
+
self
.
padding_idx
def
create_position_ids_from_inputs_embeds
(
self
,
inputs_embeds
):
""" We are provided embeddings directly. We cannot infer which are padded so just generate
sequential position ids.
:param torch.Tensor inputs_embeds:
:return torch.Tensor:
"""
seq_length
=
shape_list
(
inputs_embeds
)[
1
]
position_ids
=
tf
.
range
(
self
.
padding_idx
+
1
,
seq_length
+
self
.
padding_idx
+
1
,
dtype
=
tf
.
int32
)[
tf
.
newaxis
,
:]
return
position_ids
def
_embedding
(
self
,
inputs
,
training
=
False
):
"""Applies embedding based on inputs tensor."""
input_ids
,
position_ids
,
token_type_ids
,
inputs_embeds
=
inputs
if
input_ids
is
not
None
:
seq_length
=
shape_list
(
input_ids
)[
1
]
else
:
seq_length
=
shape_list
(
inputs_embeds
)[
1
]
if
position_ids
is
None
:
position_ids
=
tf
.
range
(
self
.
padding_idx
+
1
,
seq_length
+
self
.
padding_idx
+
1
,
dtype
=
tf
.
int32
)[
tf
.
newaxis
,
:]
if
input_ids
is
not
None
:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids
=
self
.
create_position_ids_from_input_ids
(
input_ids
)
else
:
position_ids
=
self
.
create_position_ids_from_inputs_embeds
(
inputs_embeds
)
return
super
(
TFRobertaEmbeddings
,
self
).
_embedding
([
input_ids
,
position_ids
,
token_type_ids
,
inputs_embeds
],
training
=
training
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment