Unverified Commit 774760e6 authored by Kamal Raj's avatar Kamal Raj Committed by GitHub
Browse files

distilbert-flax (#13324)

* distilbert-flax

* added missing self

* docs fix

* removed tied kernal extra init

* updated docs

* x -> hidden states

* removed head_mask

* removed from_pt, +FLAX

* updated year
parent 01977466
...@@ -357,7 +357,7 @@ Flax), PyTorch, and/or TensorFlow. ...@@ -357,7 +357,7 @@ Flax), PyTorch, and/or TensorFlow.
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ | | DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DistilBERT | ✅ | ✅ | ✅ | ✅ | | | DistilBERT | ✅ | ✅ | ✅ | ✅ | |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ | | DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
......
...@@ -44,8 +44,9 @@ Tips: ...@@ -44,8 +44,9 @@ Tips:
- DistilBERT doesn't have options to select the input positions (:obj:`position_ids` input). This could be added if - DistilBERT doesn't have options to select the input positions (:obj:`position_ids` input). This could be added if
necessary though, just let us know if you need this option. necessary though, just let us know if you need this option.
This model was contributed by `victorsanh <https://huggingface.co/victorsanh>`__. The original code can be found This model was contributed by `victorsanh <https://huggingface.co/victorsanh>`__. This model jax version was
:prefix_link:`here <examples/research-projects/distillation>`. contributed by `kamalkraj <https://huggingface.co/kamalkraj>`__. The original code can be found :prefix_link:`here
<examples/research-projects/distillation>`.
DistilBertConfig DistilBertConfig
...@@ -152,3 +153,45 @@ TFDistilBertForQuestionAnswering ...@@ -152,3 +153,45 @@ TFDistilBertForQuestionAnswering
.. autoclass:: transformers.TFDistilBertForQuestionAnswering .. autoclass:: transformers.TFDistilBertForQuestionAnswering
:members: call :members: call
FlaxDistilBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertModel
:members: __call__
FlaxDistilBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForMaskedLM
:members: __call__
FlaxDistilBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForSequenceClassification
:members: __call__
FlaxDistilBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForMultipleChoice
:members: __call__
FlaxDistilBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForTokenClassification
:members: __call__
FlaxDistilBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForQuestionAnswering
:members: __call__
...@@ -1712,6 +1712,17 @@ if is_flax_available(): ...@@ -1712,6 +1712,17 @@ if is_flax_available():
"FlaxCLIPVisionPreTrainedModel", "FlaxCLIPVisionPreTrainedModel",
] ]
) )
_import_structure["models.distilbert"].extend(
[
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
)
_import_structure["models.electra"].extend( _import_structure["models.electra"].extend(
[ [
"FlaxElectraForMaskedLM", "FlaxElectraForMaskedLM",
...@@ -3201,6 +3212,15 @@ if TYPE_CHECKING: ...@@ -3201,6 +3212,15 @@ if TYPE_CHECKING:
FlaxCLIPVisionModel, FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel, FlaxCLIPVisionPreTrainedModel,
) )
from .models.distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
from .models.electra import ( from .models.electra import (
FlaxElectraForMaskedLM, FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice, FlaxElectraForMultipleChoice,
......
...@@ -28,6 +28,7 @@ logger = logging.get_logger(__name__) ...@@ -28,6 +28,7 @@ logger = logging.get_logger(__name__)
FLAX_MODEL_MAPPING_NAMES = OrderedDict( FLAX_MODEL_MAPPING_NAMES = OrderedDict(
[ [
# Base model mapping # Base model mapping
("distilbert", "FlaxDistilBertModel"),
("roberta", "FlaxRobertaModel"), ("roberta", "FlaxRobertaModel"),
("bert", "FlaxBertModel"), ("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"), ("big_bird", "FlaxBigBirdModel"),
...@@ -63,6 +64,7 @@ FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict( ...@@ -63,6 +64,7 @@ FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict( FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
[ [
# Model for Masked LM mapping # Model for Masked LM mapping
("distilbert", "FlaxDistilBertForMaskedLM"),
("roberta", "FlaxRobertaForMaskedLM"), ("roberta", "FlaxRobertaForMaskedLM"),
("bert", "FlaxBertForMaskedLM"), ("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"),
...@@ -101,6 +103,7 @@ FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict( ...@@ -101,6 +103,7 @@ FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[ [
# Model for Sequence Classification mapping # Model for Sequence Classification mapping
("distilbert", "FlaxDistilBertForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"),
...@@ -113,6 +116,7 @@ FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( ...@@ -113,6 +116,7 @@ FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[ [
# Model for Question Answering mapping # Model for Question Answering mapping
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"),
...@@ -125,6 +129,7 @@ FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( ...@@ -125,6 +129,7 @@ FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict( FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[ [
# Model for Token Classification mapping # Model for Token Classification mapping
("distilbert", "FlaxDistilBertForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"),
("bert", "FlaxBertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"),
...@@ -135,6 +140,7 @@ FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict( ...@@ -135,6 +140,7 @@ FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict( FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict(
[ [
# Model for Multiple Choice mapping # Model for Multiple Choice mapping
("distilbert", "FlaxDistilBertForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"),
......
...@@ -18,7 +18,7 @@ ...@@ -18,7 +18,7 @@
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available from ...file_utils import _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available
_import_structure = { _import_structure = {
...@@ -58,6 +58,17 @@ if is_tf_available(): ...@@ -58,6 +58,17 @@ if is_tf_available():
"TFDistilBertPreTrainedModel", "TFDistilBertPreTrainedModel",
] ]
if is_flax_available():
_import_structure["modeling_flax_distilbert"] = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING: if TYPE_CHECKING:
from .configuration_distilbert import ( from .configuration_distilbert import (
...@@ -95,6 +106,17 @@ if TYPE_CHECKING: ...@@ -95,6 +106,17 @@ if TYPE_CHECKING:
TFDistilBertPreTrainedModel, TFDistilBertPreTrainedModel,
) )
if is_flax_available():
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else: else:
import sys import sys
......
This diff is collapsed.
...@@ -448,6 +448,69 @@ class FlaxCLIPVisionPreTrainedModel: ...@@ -448,6 +448,69 @@ class FlaxCLIPVisionPreTrainedModel:
requires_backends(cls, ["flax"]) requires_backends(cls, ["flax"])
class FlaxDistilBertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxDistilBertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxDistilBertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxDistilBertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxDistilBertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxDistilBertModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxDistilBertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["flax"])
class FlaxElectraForMaskedLM: class FlaxElectraForMaskedLM:
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"]) requires_backends(self, ["flax"])
......
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from .test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class FlaxDistilBertModelTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_attention_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_choices=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_choices = num_choices
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = DistilBertConfig(
vocab_size=self.vocab_size,
dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
hidden_dim=self.intermediate_size,
hidden_act=self.hidden_act,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
tie_weights_=True,
)
return config, input_ids, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class FlaxDistilBertModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def setUp(self):
self.model_tester = FlaxDistilBertModelTester(self)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("distilbert-base-uncased")
outputs = model(np.ones((1, 1)))
self.assertIsNotNone(outputs)
@require_flax
class FlaxDistilBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased")
input_ids = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
attention_mask = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = (1, 11, 768)
self.assertEqual(output.shape, expected_shape)
expected_slice = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]])
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment