Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
7732d0fe
Unverified
Commit
7732d0fe
authored
Feb 09, 2022
by
Lysandre Debut
Committed by
GitHub
Feb 09, 2022
Browse files
Upgrade black to version ~=22.0 (#15565)
* Upgrade black to version ~=22.0 * Check copies * Fix code
parent
d923f762
Changes
91
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
47 additions
and
47 deletions
+47
-47
src/transformers/models/swin/modeling_swin.py
src/transformers/models/swin/modeling_swin.py
+2
-2
src/transformers/models/t5/modeling_flax_t5.py
src/transformers/models/t5/modeling_flax_t5.py
+8
-8
src/transformers/models/t5/modeling_t5.py
src/transformers/models/t5/modeling_t5.py
+3
-3
src/transformers/models/t5/modeling_tf_t5.py
src/transformers/models/t5/modeling_tf_t5.py
+9
-9
src/transformers/models/tapas/modeling_tapas.py
src/transformers/models/tapas/modeling_tapas.py
+1
-1
src/transformers/models/transfo_xl/modeling_tf_transfo_xl.py
src/transformers/models/transfo_xl/modeling_tf_transfo_xl.py
+4
-4
src/transformers/models/transfo_xl/modeling_tf_transfo_xl_utilities.py
...ers/models/transfo_xl/modeling_tf_transfo_xl_utilities.py
+1
-1
src/transformers/models/transfo_xl/modeling_transfo_xl.py
src/transformers/models/transfo_xl/modeling_transfo_xl.py
+3
-3
src/transformers/models/transfo_xl/modeling_transfo_xl_utilities.py
...ormers/models/transfo_xl/modeling_transfo_xl_utilities.py
+1
-1
src/transformers/models/trocr/modeling_trocr.py
src/transformers/models/trocr/modeling_trocr.py
+1
-1
src/transformers/models/unispeech/modeling_unispeech.py
src/transformers/models/unispeech/modeling_unispeech.py
+1
-1
src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
...ansformers/models/unispeech_sat/modeling_unispeech_sat.py
+1
-1
src/transformers/models/vit_mae/modeling_vit_mae.py
src/transformers/models/vit_mae/modeling_vit_mae.py
+5
-5
src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
+1
-1
src/transformers/models/wav2vec2/modeling_wav2vec2.py
src/transformers/models/wav2vec2/modeling_wav2vec2.py
+1
-1
src/transformers/models/wavlm/modeling_wavlm.py
src/transformers/models/wavlm/modeling_wavlm.py
+1
-1
src/transformers/models/xglm/modeling_xglm.py
src/transformers/models/xglm/modeling_xglm.py
+1
-1
src/transformers/models/xlm/configuration_xlm.py
src/transformers/models/xlm/configuration_xlm.py
+1
-1
src/transformers/models/xlnet/modeling_tf_xlnet.py
src/transformers/models/xlnet/modeling_tf_xlnet.py
+1
-1
src/transformers/models/xlnet/modeling_xlnet.py
src/transformers/models/xlnet/modeling_xlnet.py
+1
-1
No files found.
src/transformers/models/swin/modeling_swin.py
View file @
7732d0fe
...
...
@@ -544,8 +544,8 @@ class SwinEncoder(nn.Module):
[
SwinLayer
(
config
=
config
,
dim
=
int
(
config
.
embed_dim
*
2
**
i_layer
),
input_resolution
=
(
grid_size
[
0
]
//
(
2
**
i_layer
),
grid_size
[
1
]
//
(
2
**
i_layer
)),
dim
=
int
(
config
.
embed_dim
*
2
**
i_layer
),
input_resolution
=
(
grid_size
[
0
]
//
(
2
**
i_layer
),
grid_size
[
1
]
//
(
2
**
i_layer
)),
depth
=
config
.
depths
[
i_layer
],
num_heads
=
config
.
num_heads
[
i_layer
],
drop_path
=
dpr
[
sum
(
config
.
depths
[:
i_layer
])
:
sum
(
config
.
depths
[:
i_layer
+
1
])],
...
...
src/transformers/models/t5/modeling_flax_t5.py
View file @
7732d0fe
...
...
@@ -92,8 +92,8 @@ class FlaxT5DenseReluDense(nn.Module):
dtype
:
jnp
.
dtype
=
jnp
.
float32
def
setup
(
self
):
wi_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
config
.
d_model
**
-
0.5
)
wo_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
config
.
d_ff
**
-
0.5
)
wi_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
config
.
d_model
**-
0.5
)
wo_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
config
.
d_ff
**-
0.5
)
self
.
wi
=
nn
.
Dense
(
self
.
config
.
d_ff
,
...
...
@@ -122,8 +122,8 @@ class FlaxT5DenseGatedGeluDense(nn.Module):
dtype
:
jnp
.
dtype
=
jnp
.
float32
# the dtype of the computation
def
setup
(
self
):
wi_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
config
.
d_model
**
-
0.5
)
wo_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
config
.
d_ff
**
-
0.5
)
wi_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
config
.
d_model
**-
0.5
)
wo_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
config
.
d_ff
**-
0.5
)
self
.
wi_0
=
nn
.
Dense
(
self
.
config
.
d_ff
,
...
...
@@ -194,8 +194,8 @@ class FlaxT5Attention(nn.Module):
self
.
inner_dim
=
self
.
n_heads
*
self
.
key_value_proj_dim
q_init_std
=
self
.
config
.
initializer_factor
*
((
self
.
inner_dim
*
self
.
key_value_proj_dim
)
**
-
0.5
)
kv_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
inner_dim
**
-
0.5
)
o_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
inner_dim
**
-
0.5
)
kv_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
inner_dim
**-
0.5
)
o_init_std
=
self
.
config
.
initializer_factor
*
(
self
.
inner_dim
**-
0.5
)
self
.
q
=
nn
.
Dense
(
self
.
inner_dim
,
...
...
@@ -1434,7 +1434,7 @@ class FlaxT5ForConditionalGenerationModule(nn.Module):
if
self
.
config
.
tie_word_embeddings
:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output
=
sequence_output
*
(
self
.
model_dim
**
-
0.5
)
sequence_output
=
sequence_output
*
(
self
.
model_dim
**-
0.5
)
if
self
.
config
.
tie_word_embeddings
:
shared_embedding
=
self
.
shared
.
variables
[
"params"
][
"embedding"
]
...
...
@@ -1542,7 +1542,7 @@ class FlaxT5ForConditionalGeneration(FlaxT5PreTrainedModel):
if
self
.
config
.
tie_word_embeddings
:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output
=
sequence_output
*
(
self
.
config
.
d_model
**
-
0.5
)
sequence_output
=
sequence_output
*
(
self
.
config
.
d_model
**-
0.5
)
if
self
.
config
.
tie_word_embeddings
:
shared_embedding
=
module
.
shared
.
variables
[
"params"
][
"embedding"
]
...
...
src/transformers/models/t5/modeling_t5.py
View file @
7732d0fe
...
...
@@ -771,8 +771,8 @@ class T5PreTrainedModel(PreTrainedModel):
key_value_proj_dim
=
self
.
config
.
d_kv
n_heads
=
self
.
config
.
num_heads
module
.
q
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
factor
*
((
d_model
*
key_value_proj_dim
)
**
-
0.5
))
module
.
k
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
factor
*
(
d_model
**
-
0.5
))
module
.
v
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
factor
*
(
d_model
**
-
0.5
))
module
.
k
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
factor
*
(
d_model
**-
0.5
))
module
.
v
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
factor
*
(
d_model
**-
0.5
))
module
.
o
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
factor
*
((
n_heads
*
key_value_proj_dim
)
**
-
0.5
))
if
module
.
has_relative_attention_bias
:
module
.
relative_attention_bias
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
factor
*
((
d_model
)
**
-
0.5
))
...
...
@@ -1639,7 +1639,7 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
if
self
.
config
.
tie_word_embeddings
:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output
=
sequence_output
*
(
self
.
model_dim
**
-
0.5
)
sequence_output
=
sequence_output
*
(
self
.
model_dim
**-
0.5
)
lm_logits
=
self
.
lm_head
(
sequence_output
)
...
...
src/transformers/models/t5/modeling_tf_t5.py
View file @
7732d0fe
...
...
@@ -94,10 +94,10 @@ class TFT5DenseReluDense(tf.keras.layers.Layer):
def
__init__
(
self
,
config
,
**
kwargs
):
super
().
__init__
(
**
kwargs
)
wi_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
config
.
d_model
**
-
0.5
)
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
config
.
d_model
**-
0.5
)
)
wo_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
config
.
d_ff
**
-
0.5
)
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
config
.
d_ff
**-
0.5
)
)
self
.
wi
=
tf
.
keras
.
layers
.
Dense
(
config
.
d_ff
,
use_bias
=
False
,
name
=
"wi"
,
kernel_initializer
=
wi_initializer
...
...
@@ -120,10 +120,10 @@ class TFT5GatedGeluDense(tf.keras.layers.Layer):
def
__init__
(
self
,
config
,
**
kwargs
):
super
().
__init__
(
**
kwargs
)
wi_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
config
.
d_model
**
-
0.5
)
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
config
.
d_model
**-
0.5
)
)
wo_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
config
.
d_ff
**
-
0.5
)
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
config
.
d_ff
**-
0.5
)
)
self
.
wi_0
=
tf
.
keras
.
layers
.
Dense
(
config
.
d_ff
,
use_bias
=
False
,
name
=
"wi_0"
,
kernel_initializer
=
wi_initializer
...
...
@@ -189,16 +189,16 @@ class TFT5Attention(tf.keras.layers.Layer):
mean
=
0
,
stddev
=
config
.
initializer_factor
*
((
self
.
inner_dim
*
self
.
key_value_proj_dim
)
**
-
0.5
)
)
k_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
self
.
inner_dim
**
-
0.5
)
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
self
.
inner_dim
**-
0.5
)
)
v_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
self
.
inner_dim
**
-
0.5
)
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
self
.
inner_dim
**-
0.5
)
)
o_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
self
.
inner_dim
**
-
0.5
)
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
self
.
inner_dim
**-
0.5
)
)
self
.
relative_attention_bias_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
self
.
inner_dim
**
-
0.5
)
mean
=
0
,
stddev
=
config
.
initializer_factor
*
(
self
.
inner_dim
**-
0.5
)
)
self
.
q
=
tf
.
keras
.
layers
.
Dense
(
...
...
@@ -1472,7 +1472,7 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
# T5v1.1 does not tie output word embeddings and thus does not require downscaling
if
self
.
config
.
tie_word_embeddings
:
sequence_output
=
sequence_output
*
(
self
.
model_dim
**
-
0.5
)
sequence_output
=
sequence_output
*
(
self
.
model_dim
**-
0.5
)
logits
=
self
.
shared
(
sequence_output
,
mode
=
"linear"
)
else
:
logits
=
self
.
lm_head
(
sequence_output
)
...
...
src/transformers/models/tapas/modeling_tapas.py
View file @
7732d0fe
...
...
@@ -2365,7 +2365,7 @@ def _calculate_expected_result(
# PyTorch does not currently support Huber loss with custom delta so we define it ourself
def
huber_loss
(
input
,
target
,
delta
:
float
=
1.0
):
errors
=
torch
.
abs
(
input
-
target
)
# shape (batch_size,)
return
torch
.
where
(
errors
<
delta
,
0.5
*
errors
**
2
,
errors
*
delta
-
(
0.5
*
delta
**
2
))
return
torch
.
where
(
errors
<
delta
,
0.5
*
errors
**
2
,
errors
*
delta
-
(
0.5
*
delta
**
2
))
def
_calculate_regression_loss
(
...
...
src/transformers/models/transfo_xl/modeling_tf_transfo_xl.py
View file @
7732d0fe
...
...
@@ -149,7 +149,7 @@ class TFRelPartialLearnableMultiHeadAttn(tf.keras.layers.Layer):
self
.
layer_norm
=
tf
.
keras
.
layers
.
LayerNormalization
(
epsilon
=
layer_norm_epsilon
,
name
=
"layer_norm"
)
self
.
scale
=
1
/
(
d_head
**
0.5
)
self
.
scale
=
1
/
(
d_head
**
0.5
)
self
.
pre_lnorm
=
pre_lnorm
...
...
@@ -350,7 +350,7 @@ class TFAdaptiveEmbedding(tf.keras.layers.Layer):
self
.
div_val
=
div_val
self
.
d_proj
=
d_proj
self
.
emb_scale
=
d_proj
**
0.5
self
.
emb_scale
=
d_proj
**
0.5
self
.
cutoff_ends
=
[
0
]
+
self
.
cutoffs
...
...
@@ -362,7 +362,7 @@ class TFAdaptiveEmbedding(tf.keras.layers.Layer):
else
:
for
i
in
range
(
len
(
self
.
cutoffs
)):
l_idx
,
r_idx
=
self
.
cutoff_ends
[
i
],
self
.
cutoff_ends
[
i
+
1
]
d_emb_i
=
d_embed
//
(
div_val
**
i
)
d_emb_i
=
d_embed
//
(
div_val
**
i
)
self
.
emb_layers
.
append
(
TFTransfoEmbeddings
(
r_idx
-
l_idx
,
...
...
@@ -374,7 +374,7 @@ class TFAdaptiveEmbedding(tf.keras.layers.Layer):
def
build
(
self
,
input_shape
):
for
i
in
range
(
len
(
self
.
cutoffs
)):
d_emb_i
=
self
.
d_embed
//
(
self
.
div_val
**
i
)
d_emb_i
=
self
.
d_embed
//
(
self
.
div_val
**
i
)
self
.
emb_projs
.
append
(
self
.
add_weight
(
shape
=
(
d_emb_i
,
self
.
d_proj
),
...
...
src/transformers/models/transfo_xl/modeling_tf_transfo_xl_utilities.py
View file @
7732d0fe
...
...
@@ -80,7 +80,7 @@ class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer):
else
:
for
i
in
range
(
len
(
self
.
cutoffs
)):
l_idx
,
r_idx
=
self
.
cutoff_ends
[
i
],
self
.
cutoff_ends
[
i
+
1
]
d_emb_i
=
self
.
d_embed
//
(
self
.
div_val
**
i
)
d_emb_i
=
self
.
d_embed
//
(
self
.
div_val
**
i
)
weight
=
self
.
add_weight
(
shape
=
(
d_emb_i
,
self
.
d_proj
),
initializer
=
"zeros"
,
trainable
=
True
,
name
=
f
"out_projs_._
{
i
}
"
...
...
src/transformers/models/transfo_xl/modeling_transfo_xl.py
View file @
7732d0fe
...
...
@@ -259,7 +259,7 @@ class RelPartialLearnableMultiHeadAttn(nn.Module):
self
.
layer_norm
=
nn
.
LayerNorm
(
d_model
,
eps
=
layer_norm_epsilon
)
self
.
scale
=
1
/
(
d_head
**
0.5
)
self
.
scale
=
1
/
(
d_head
**
0.5
)
self
.
pre_lnorm
=
pre_lnorm
...
...
@@ -412,7 +412,7 @@ class AdaptiveEmbedding(nn.Module):
self
.
div_val
=
div_val
self
.
d_proj
=
d_proj
self
.
emb_scale
=
d_proj
**
0.5
self
.
emb_scale
=
d_proj
**
0.5
self
.
cutoff_ends
=
[
0
]
+
self
.
cutoffs
...
...
@@ -425,7 +425,7 @@ class AdaptiveEmbedding(nn.Module):
else
:
for
i
in
range
(
len
(
self
.
cutoffs
)):
l_idx
,
r_idx
=
self
.
cutoff_ends
[
i
],
self
.
cutoff_ends
[
i
+
1
]
d_emb_i
=
d_embed
//
(
div_val
**
i
)
d_emb_i
=
d_embed
//
(
div_val
**
i
)
self
.
emb_layers
.
append
(
nn
.
Embedding
(
r_idx
-
l_idx
,
d_emb_i
))
self
.
emb_projs
.
append
(
nn
.
Parameter
(
torch
.
FloatTensor
(
d_proj
,
d_emb_i
)))
...
...
src/transformers/models/transfo_xl/modeling_transfo_xl_utilities.py
View file @
7732d0fe
...
...
@@ -60,7 +60,7 @@ class ProjectedAdaptiveLogSoftmax(nn.Module):
else
:
for
i
in
range
(
len
(
self
.
cutoffs
)):
l_idx
,
r_idx
=
self
.
cutoff_ends
[
i
],
self
.
cutoff_ends
[
i
+
1
]
d_emb_i
=
d_embed
//
(
div_val
**
i
)
d_emb_i
=
d_embed
//
(
div_val
**
i
)
self
.
out_projs
.
append
(
nn
.
Parameter
(
torch
.
FloatTensor
(
d_proj
,
d_emb_i
)))
...
...
src/transformers/models/trocr/modeling_trocr.py
View file @
7732d0fe
...
...
@@ -185,7 +185,7 @@ class TrOCRAttention(nn.Module):
raise
ValueError
(
f
"embed_dim must be divisible by num_heads (got `embed_dim`:
{
self
.
embed_dim
}
and `num_heads`:
{
num_heads
}
)."
)
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
is_decoder
=
is_decoder
self
.
k_proj
=
nn
.
Linear
(
self
.
kdim
,
embed_dim
,
bias
=
bias
)
...
...
src/transformers/models/unispeech/modeling_unispeech.py
View file @
7732d0fe
...
...
@@ -484,7 +484,7 @@ class UniSpeechAttention(nn.Module):
f
"embed_dim must be divisible by num_heads (got `embed_dim`:
{
self
.
embed_dim
}
"
f
" and `num_heads`:
{
num_heads
}
)."
)
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
is_decoder
=
is_decoder
self
.
k_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
bias
=
bias
)
...
...
src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
View file @
7732d0fe
...
...
@@ -523,7 +523,7 @@ class UniSpeechSatAttention(nn.Module):
f
"embed_dim must be divisible by num_heads (got `embed_dim`:
{
self
.
embed_dim
}
"
f
" and `num_heads`:
{
num_heads
}
)."
)
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
is_decoder
=
is_decoder
self
.
k_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
bias
=
bias
)
...
...
src/transformers/models/vit_mae/modeling_vit_mae.py
View file @
7732d0fe
...
...
@@ -192,7 +192,7 @@ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
omega
=
np
.
arange
(
embed_dim
//
2
,
dtype
=
np
.
float
)
omega
/=
embed_dim
/
2.0
omega
=
1.0
/
10000
**
omega
# (D/2,)
omega
=
1.0
/
10000
**
omega
# (D/2,)
pos
=
pos
.
reshape
(
-
1
)
# (M,)
out
=
np
.
einsum
(
"m,d->md"
,
pos
,
omega
)
# (M, D/2), outer product
...
...
@@ -231,7 +231,7 @@ class ViTMAEEmbeddings(nn.Module):
def
initialize_weights
(
self
):
# initialize (and freeze) position embeddings by sin-cos embedding
pos_embed
=
get_2d_sincos_pos_embed
(
self
.
position_embeddings
.
shape
[
-
1
],
int
(
self
.
patch_embeddings
.
num_patches
**
0.5
),
add_cls_token
=
True
self
.
position_embeddings
.
shape
[
-
1
],
int
(
self
.
patch_embeddings
.
num_patches
**
0.5
),
add_cls_token
=
True
)
self
.
position_embeddings
.
data
.
copy_
(
torch
.
from_numpy
(
pos_embed
).
float
().
unsqueeze
(
0
))
...
...
@@ -741,7 +741,7 @@ class ViTMAEDecoder(nn.Module):
self
.
decoder_norm
=
nn
.
LayerNorm
(
config
.
decoder_hidden_size
)
self
.
decoder_pred
=
nn
.
Linear
(
config
.
decoder_hidden_size
,
config
.
patch_size
**
2
*
config
.
num_channels
,
bias
=
True
config
.
decoder_hidden_size
,
config
.
patch_size
**
2
*
config
.
num_channels
,
bias
=
True
)
# encoder to decoder
self
.
gradient_checkpointing
=
False
self
.
config
=
config
...
...
@@ -750,7 +750,7 @@ class ViTMAEDecoder(nn.Module):
def
initialize_weights
(
self
,
num_patches
):
# initialize (and freeze) position embeddings by sin-cos embedding
decoder_pos_embed
=
get_2d_sincos_pos_embed
(
self
.
decoder_pos_embed
.
shape
[
-
1
],
int
(
num_patches
**
0.5
),
add_cls_token
=
True
self
.
decoder_pos_embed
.
shape
[
-
1
],
int
(
num_patches
**
0.5
),
add_cls_token
=
True
)
self
.
decoder_pos_embed
.
data
.
copy_
(
torch
.
from_numpy
(
decoder_pos_embed
).
float
().
unsqueeze
(
0
))
...
...
@@ -861,7 +861,7 @@ class ViTMAEForPreTraining(ViTMAEPreTrainedModel):
h
=
w
=
imgs
.
shape
[
2
]
//
p
x
=
imgs
.
reshape
(
shape
=
(
imgs
.
shape
[
0
],
3
,
h
,
p
,
w
,
p
))
x
=
torch
.
einsum
(
"nchpwq->nhwpqc"
,
x
)
x
=
x
.
reshape
(
shape
=
(
imgs
.
shape
[
0
],
h
*
w
,
p
**
2
*
3
))
x
=
x
.
reshape
(
shape
=
(
imgs
.
shape
[
0
],
h
*
w
,
p
**
2
*
3
))
return
x
def
unpatchify
(
self
,
x
):
...
...
src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
View file @
7732d0fe
...
...
@@ -770,7 +770,7 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer):
f
"embed_dim must be divisible by num_heads (got `embed_dim`:
{
self
.
embed_dim
}
"
f
" and `num_heads`:
{
num_heads
}
)."
)
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
is_decoder
=
is_decoder
self
.
k_proj
=
tf
.
keras
.
layers
.
Dense
(
embed_dim
,
use_bias
=
bias
,
name
=
"k_proj"
)
...
...
src/transformers/models/wav2vec2/modeling_wav2vec2.py
View file @
7732d0fe
...
...
@@ -566,7 +566,7 @@ class Wav2Vec2Attention(nn.Module):
f
"embed_dim must be divisible by num_heads (got `embed_dim`:
{
self
.
embed_dim
}
"
f
" and `num_heads`:
{
num_heads
}
)."
)
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
is_decoder
=
is_decoder
self
.
k_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
bias
=
bias
)
...
...
src/transformers/models/wavlm/modeling_wavlm.py
View file @
7732d0fe
...
...
@@ -486,7 +486,7 @@ class WavLMAttention(nn.Module):
f
"embed_dim must be divisible by num_heads (got `embed_dim`:
{
self
.
embed_dim
}
"
f
" and `num_heads`:
{
num_heads
}
)."
)
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
k_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
)
self
.
v_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
)
...
...
src/transformers/models/xglm/modeling_xglm.py
View file @
7732d0fe
...
...
@@ -261,7 +261,7 @@ class XGLMAttention(nn.Module):
f
"embed_dim must be divisible by num_heads (got `embed_dim`:
{
self
.
embed_dim
}
"
f
" and `num_heads`:
{
num_heads
}
)."
)
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
is_decoder
=
is_decoder
self
.
k_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
bias
=
bias
)
...
...
src/transformers/models/xlm/configuration_xlm.py
View file @
7732d0fe
...
...
@@ -169,7 +169,7 @@ class XLMConfig(PretrainedConfig):
n_langs
=
1
,
use_lang_emb
=
True
,
max_position_embeddings
=
512
,
embed_init_std
=
2048
**
-
0.5
,
embed_init_std
=
2048
**-
0.5
,
layer_norm_eps
=
1e-12
,
init_std
=
0.02
,
bos_index
=
0
,
...
...
src/transformers/models/xlnet/modeling_tf_xlnet.py
View file @
7732d0fe
...
...
@@ -76,7 +76,7 @@ class TFXLNetRelativeAttention(tf.keras.layers.Layer):
self
.
n_head
=
config
.
n_head
self
.
d_head
=
config
.
d_head
self
.
d_model
=
config
.
d_model
self
.
scale
=
1
/
(
config
.
d_head
**
0.5
)
self
.
scale
=
1
/
(
config
.
d_head
**
0.5
)
self
.
initializer_range
=
config
.
initializer_range
self
.
output_attentions
=
config
.
output_attentions
...
...
src/transformers/models/xlnet/modeling_xlnet.py
View file @
7732d0fe
...
...
@@ -220,7 +220,7 @@ class XLNetRelativeAttention(nn.Module):
self
.
n_head
=
config
.
n_head
self
.
d_head
=
config
.
d_head
self
.
d_model
=
config
.
d_model
self
.
scale
=
1
/
(
config
.
d_head
**
0.5
)
self
.
scale
=
1
/
(
config
.
d_head
**
0.5
)
self
.
q
=
nn
.
Parameter
(
torch
.
FloatTensor
(
config
.
d_model
,
self
.
n_head
,
self
.
d_head
))
self
.
k
=
nn
.
Parameter
(
torch
.
FloatTensor
(
config
.
d_model
,
self
.
n_head
,
self
.
d_head
))
...
...
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment