Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
74dbba64
Commit
74dbba64
authored
May 02, 2019
by
MottoX
Browse files
Prepare optimizer only when args.do_train is True
parent
3ae8c8be
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
138 additions
and
133 deletions
+138
-133
examples/lm_finetuning/simple_lm_finetuning.py
examples/lm_finetuning/simple_lm_finetuning.py
+29
-28
examples/run_classifier.py
examples/run_classifier.py
+28
-27
examples/run_openai_gpt.py
examples/run_openai_gpt.py
+14
-13
examples/run_squad.py
examples/run_squad.py
+34
-33
examples/run_swag.py
examples/run_swag.py
+33
-32
No files found.
examples/lm_finetuning/simple_lm_finetuning.py
View file @
74dbba64
...
...
@@ -534,36 +534,37 @@ def main():
model
=
torch
.
nn
.
DataParallel
(
model
)
# Prepare optimizer
param_optimizer
=
list
(
model
.
named_parameters
())
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FusedAdam
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
if
args
.
do_train
:
param_optimizer
=
list
(
model
.
named_parameters
())
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FusedAdam
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
bias_correction
=
False
,
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
bias_correction
=
False
,
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
global_step
=
0
if
args
.
do_train
:
...
...
examples/run_classifier.py
View file @
74dbba64
...
...
@@ -763,35 +763,36 @@ def main():
model
=
torch
.
nn
.
DataParallel
(
model
)
# Prepare optimizer
param_optimizer
=
list
(
model
.
named_parameters
())
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FusedAdam
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
if
args
.
do_train
:
param_optimizer
=
list
(
model
.
named_parameters
())
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FusedAdam
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
bias_correction
=
False
,
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
bias_correction
=
False
,
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
global_step
=
0
nb_tr_steps
=
0
...
...
examples/run_openai_gpt.py
View file @
74dbba64
...
...
@@ -183,19 +183,20 @@ def main():
eval_dataloader
=
DataLoader
(
eval_data
,
sampler
=
eval_sampler
,
batch_size
=
args
.
eval_batch_size
)
# Prepare optimizer
param_optimizer
=
list
(
model
.
named_parameters
())
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
num_train_optimization_steps
=
len
(
train_data
)
*
args
.
num_train_epochs
//
args
.
train_batch_size
optimizer
=
OpenAIAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
max_grad_norm
=
args
.
max_grad_norm
,
weight_decay
=
args
.
weight_decay
,
t_total
=
num_train_optimization_steps
)
if
args
.
do_train
:
param_optimizer
=
list
(
model
.
named_parameters
())
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
num_train_optimization_steps
=
len
(
train_data
)
*
args
.
num_train_epochs
//
args
.
train_batch_size
optimizer
=
OpenAIAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
max_grad_norm
=
args
.
max_grad_norm
,
weight_decay
=
args
.
weight_decay
,
t_total
=
num_train_optimization_steps
)
if
args
.
do_train
:
nb_tr_steps
,
tr_loss
,
exp_average_loss
=
0
,
0
,
None
...
...
examples/run_squad.py
View file @
74dbba64
...
...
@@ -922,40 +922,41 @@ def main():
model
=
torch
.
nn
.
DataParallel
(
model
)
# Prepare optimizer
param_optimizer
=
list
(
model
.
named_parameters
())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer
=
[
n
for
n
in
param_optimizer
if
'pooler'
not
in
n
[
0
]]
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FusedAdam
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
bias_correction
=
False
,
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
if
args
.
do_train
:
param_optimizer
=
list
(
model
.
named_parameters
())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer
=
[
n
for
n
in
param_optimizer
if
'pooler'
not
in
n
[
0
]]
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FusedAdam
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
bias_correction
=
False
,
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
global_step
=
0
if
args
.
do_train
:
...
...
examples/run_swag.py
View file @
74dbba64
...
...
@@ -385,39 +385,40 @@ def main():
model
=
torch
.
nn
.
DataParallel
(
model
)
# Prepare optimizer
param_optimizer
=
list
(
model
.
named_parameters
())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer
=
[
n
for
n
in
param_optimizer
if
'pooler'
not
in
n
[
0
]]
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FusedAdam
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
bias_correction
=
False
,
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
if
args
.
do_train
:
param_optimizer
=
list
(
model
.
named_parameters
())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer
=
[
n
for
n
in
param_optimizer
if
'pooler'
not
in
n
[
0
]]
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FusedAdam
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
bias_correction
=
False
,
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
global_step
=
0
if
args
.
do_train
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment