Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
73a59a2f
"src/sdk/git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "9484efb521717c9cb5639b1e132f6f196401da39"
Unverified
Commit
73a59a2f
authored
Aug 07, 2024
by
Francisco Kurucz
Committed by
GitHub
Aug 07, 2024
Browse files
Fix references to model google mt5 small (#32497)
parent
cba7bcf8
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
9 additions
and
9 deletions
+9
-9
src/transformers/models/mt5/modeling_mt5.py
src/transformers/models/mt5/modeling_mt5.py
+9
-9
No files found.
src/transformers/models/mt5/modeling_mt5.py
View file @
73a59a2f
...
@@ -1435,7 +1435,7 @@ class MT5Model(MT5PreTrainedModel):
...
@@ -1435,7 +1435,7 @@ class MT5Model(MT5PreTrainedModel):
@
add_start_docstrings_to_model_forward
(
MT5_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
MT5_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
# Copied from transformers.models.t5.modeling_t5.T5Model.forward with T5->MT5, t5->mt5
# Copied from transformers.models.t5.modeling_t5.T5Model.forward with
google-t5/->google/,
T5->MT5, t5->mt5
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
...
@@ -1462,8 +1462,8 @@ class MT5Model(MT5PreTrainedModel):
...
@@ -1462,8 +1462,8 @@ class MT5Model(MT5PreTrainedModel):
```python
```python
>>> from transformers import AutoTokenizer, MT5Model
>>> from transformers import AutoTokenizer, MT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google
-mt5
/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5Model.from_pretrained("google
-mt5
/mt5-small")
>>> model = MT5Model.from_pretrained("google/mt5-small")
>>> input_ids = tokenizer(
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
...
@@ -1665,7 +1665,7 @@ class MT5ForConditionalGeneration(MT5PreTrainedModel):
...
@@ -1665,7 +1665,7 @@ class MT5ForConditionalGeneration(MT5PreTrainedModel):
@
add_start_docstrings_to_model_forward
(
MT5_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
MT5_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
Seq2SeqLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.forward with T5->MT5, t5->mt5
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.forward with
google-t5/->google/,
T5->MT5, t5->mt5
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
...
@@ -1698,8 +1698,8 @@ class MT5ForConditionalGeneration(MT5PreTrainedModel):
...
@@ -1698,8 +1698,8 @@ class MT5ForConditionalGeneration(MT5PreTrainedModel):
```python
```python
>>> from transformers import AutoTokenizer, MT5ForConditionalGeneration
>>> from transformers import AutoTokenizer, MT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google
-mt5
/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForConditionalGeneration.from_pretrained("google
-mt5
/mt5-small")
>>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> # training
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
...
@@ -1990,7 +1990,7 @@ class MT5EncoderModel(MT5PreTrainedModel):
...
@@ -1990,7 +1990,7 @@ class MT5EncoderModel(MT5PreTrainedModel):
@
add_start_docstrings_to_model_forward
(
MT5_ENCODER_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
MT5_ENCODER_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
BaseModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
BaseModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.forward with T5->MT5, t5->mt5
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.forward with
google-t5/->google/,
T5->MT5, t5->mt5
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
...
@@ -2009,8 +2009,8 @@ class MT5EncoderModel(MT5PreTrainedModel):
...
@@ -2009,8 +2009,8 @@ class MT5EncoderModel(MT5PreTrainedModel):
```python
```python
>>> from transformers import AutoTokenizer, MT5EncoderModel
>>> from transformers import AutoTokenizer, MT5EncoderModel
>>> tokenizer = AutoTokenizer.from_pretrained("google
-mt5
/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5EncoderModel.from_pretrained("google
-mt5
/mt5-small")
>>> model = MT5EncoderModel.from_pretrained("google/mt5-small")
>>> input_ids = tokenizer(
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
... ).input_ids # Batch size 1
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment