Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
73306d02
Commit
73306d02
authored
Jan 29, 2020
by
Lysandre
Committed by
Lysandre Debut
Jan 30, 2020
Browse files
FlauBERT documentation
parent
ce2f4227
Changes
4
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
247 additions
and
241 deletions
+247
-241
docs/source/index.rst
docs/source/index.rst
+2
-1
docs/source/model_doc/flaubert.rst
docs/source/model_doc/flaubert.rst
+72
-0
src/transformers/configuration_flaubert.py
src/transformers/configuration_flaubert.py
+103
-36
src/transformers/modeling_flaubert.py
src/transformers/modeling_flaubert.py
+70
-204
No files found.
docs/source/index.rst
View file @
73306d02
...
...
@@ -97,4 +97,5 @@ The library currently contains PyTorch and Tensorflow implementations, pre-train
model_doc/ctrl
model_doc/camembert
model_doc/albert
model_doc/xlmroberta
\ No newline at end of file
model_doc/xlmroberta
model_doc/flaubert
\ No newline at end of file
docs/source/model_doc/flaubert.rst
0 → 100644
View file @
73306d02
FlauBERT
----------------------------------------------------
The FlauBERT model was proposed in the paper
`FlauBERT: Unsupervised Language Model Pre-training for French <https://arxiv.org/abs/1912.05372>`__ by Hang Le et al.
It's a transformer pre-trained using a masked language modeling (MLM) objective (BERT-like).
The abstract from the paper is the following:
*Language models have become a key step to achieve state-of-the art results in many different Natural Language
Processing (NLP) tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient
way to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their
contextualization at the sentence level. This has been widely demonstrated for English using contextualized
representations (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et
al., 2019; Yang et al., 2019b). In this paper, we introduce and share FlauBERT, a model learned on a very large
and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre
for Scientific Research) Jean Zay supercomputer. We apply our French language models to diverse NLP tasks (text
classification, paraphrasing, natural language inference, parsing, word sense disambiguation) and show that most
of the time they outperform other pre-training approaches. Different versions of FlauBERT as well as a unified
evaluation protocol for the downstream tasks, called FLUE (French Language Understanding Evaluation), are shared
to the research community for further reproducible experiments in French NLP.*
FlaubertConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaubertConfig
:members:
FlaubertTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaubertTokenizer
:members:
FlaubertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaubertModel
:members:
FlaubertWithLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaubertWithLMHeadModel
:members:
FlaubertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaubertForSequenceClassification
:members:
FlaubertForQuestionAnsweringSimple
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaubertForQuestionAnsweringSimple
:members:
FlaubertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaubertForQuestionAnswering
:members:
src/transformers/configuration_flaubert.py
View file @
73306d02
...
...
@@ -31,44 +31,111 @@ FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class
FlaubertConfig
(
XLMConfig
):
"""Configuration class to store the configuration of a `FlaubertModel`.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `FlaubertModel`.
d_model: Size of the encoder layers and the pooler layer.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
d_inner: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
ff_activation: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
untie_r: untie relative position biases
attn_type: 'bi' for Flaubert, 'uni' for Transformer-XL
"""
Configuration class to store the configuration of a `FlaubertModel`.
This is the configuration class to store the configuration of a :class:`~transformers.XLMModel`.
It is used to instantiate an XLM model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the `xlm-mlm-en-2048 <https://huggingface.co/xlm-mlm-en-2048>`__ architecture.
dropout: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used
to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig`
for more information.
dropout: float, dropout rate.
init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform".
init_std: float, initialize the parameters with a normal distribution
with mean 0 and stddev init_std. Only effective when init="normal".
mem_len: int, the number of tokens to cache.
reuse_len: int, the number of tokens in the currect batch to be cached
and reused in the future.
bi_data: bool, whether to use bidirectional input pipeline.
Usually set to True during pretraining and False during finetuning.
clamp_len: int, clamp all relative distances larger than clamp_len.
-1 means no clamping.
same_length: bool, whether to use the same attention length for each token.
Args:
pre_norm (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to apply the layer normalization before or after the feed forward layer following the
attention in each layer.
vocab_size (:obj:`int`, optional, defaults to 30145):
Vocabulary size of the XLM model. Defines the different tokens that
can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.XLMModel`.
emb_dim (:obj:`int`, optional, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
n_layer (:obj:`int`, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (:obj:`int`, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (:obj:`float`, optional, defaults to 0.1):
The dropout probability for all fully connected
layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, optional, defaults to 0.1):
The dropout probability for the attention mechanism
gelu_activation (:obj:`boolean`, optional, defaults to :obj:`True`):
The non-linear activation function (function or string) in the
encoder and pooler. If set to `True`, "gelu" will be used instead of "relu".
sinusoidal_embeddings (:obj:`boolean`, optional, defaults to :obj:`False`):
Whether to use sinusoidal positional embeddings instead of absolute positional embeddings.
causal (:obj:`boolean`, optional, defaults to :obj:`False`):
Set this to `True` for the model to behave in a causal manner.
Causal models use a triangular attention mask in order to only attend to the left-side context instead
if a bidirectional context.
asm (:obj:`boolean`, optional, defaults to :obj:`False`):
Whether to use an adaptive log softmax projection layer instead of a linear layer for the prediction
layer.
n_langs (:obj:`int`, optional, defaults to 1):
The number of languages the model handles. Set to 1 for monolingual models.
use_lang_emb (:obj:`boolean`, optional, defaults to :obj:`True`)
Whether to use language embeddings. Some models use additional language embeddings, see
`the multilingual models page <http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings>`__
for information on how to use them.
max_position_embeddings (:obj:`int`, optional, defaults to 512):
The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
embed_init_std (:obj:`float`, optional, defaults to 2048^-0.5):
The standard deviation of the truncated_normal_initializer for
initializing the embedding matrices.
init_std (:obj:`int`, optional, defaults to 50257):
The standard deviation of the truncated_normal_initializer for
initializing all weight matrices except the embedding matrices.
layer_norm_eps (:obj:`float`, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.
bos_index (:obj:`int`, optional, defaults to 0):
The index of the beginning of sentence token in the vocabulary.
eos_index (:obj:`int`, optional, defaults to 1):
The index of the end of sentence token in the vocabulary.
pad_index (:obj:`int`, optional, defaults to 2):
The index of the padding token in the vocabulary.
unk_index (:obj:`int`, optional, defaults to 3):
The index of the unknown token in the vocabulary.
mask_index (:obj:`int`, optional, defaults to 5):
The index of the masking token in the vocabulary.
is_encoder(:obj:`boolean`, optional, defaults to :obj:`True`):
Whether the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
summary_type (:obj:`string`, optional, defaults to "first"):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.XLMForSequenceClassification`.
Is one of the following options:
- 'last' => take the last token hidden state (like XLNet)
- 'first' => take the first token hidden state (like Bert)
- 'mean' => take the mean of all tokens hidden states
- 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
- 'attn' => Not implemented now, use multi-head attention
summary_use_proj (:obj:`boolean`, optional, defaults to :obj:`True`):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.XLMForSequenceClassification`.
Add a projection after the vector extraction
summary_activation (:obj:`string` or :obj:`None`, optional, defaults to :obj:`None`):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.XLMForSequenceClassification`.
'tanh' => add a tanh activation to the output, Other => no activation.
summary_proj_to_labels (:obj:`boolean`, optional, defaults to :obj:`True`):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.XLMForSequenceClassification`.
If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
summary_first_dropout (:obj:`float`, optional, defaults to 0.1):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.XLMForSequenceClassification`.
Add a dropout before the projection and activation
start_n_top (:obj:`int`, optional, defaults to 5):
Used in the SQuAD evaluation script for XLM and XLNet.
end_n_top (:obj:`int`, optional, defaults to 5):
Used in the SQuAD evaluation script for XLM and XLNet.
mask_token_id (:obj:`int`, optional, defaults to 0):
Model agnostic parameter to identify masked tokens when generating text in an MLM context.
lang_id (:obj:`int`, optional, defaults to 1):
The ID of the language used by the model. This parameter is used when generating
text in a given language.
"""
pretrained_config_archive_map
=
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
...
...
src/transformers/modeling_flaubert.py
View file @
73306d02
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment