"...git@developer.sourcefind.cn:wangsen/paddle_dbnet.git" did not exist on "5adba56f2d8792fe64d13456dc2dce4eba83a68e"
Unverified Commit 71c87119 authored by Funtowicz Morgan's avatar Funtowicz Morgan Committed by GitHub
Browse files

Adding Docker images for transformers + notebooks (#3051)



* Added transformers-pytorch-cpu and gpu Docker images
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added automatic jupyter launch for Docker image.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Move image from alpine to Ubuntu to align with NVidia container images.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added TRANSFORMERS_VERSION argument to Dockerfile.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added Pytorch-GPU based Docker image
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added Tensorflow images.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Use python 3.7 as Tensorflow doesnt provide 3.8 compatible wheel.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Remove double FROM instructions on transformers-pytorch-cpu image.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added transformers-tensorflow-gpu Docker image.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* use the correct ubuntu version for tensorflow-gpu
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added pipelines example notebook
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added transformers-cpu and transformers-gpu (including both PyTorch and TensorFlow) images.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Docker images doesnt start jupyter notebook by default.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Tokenizers notebook
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Update images links
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Update Docker images to python 3.7.6 and transformers 2.5.1
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added 02-transformers notebook.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Trying to realign 02-transformers notebook ?
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added Transformer image schema

* Some tweaks on tokenizers notebook

* Removed old notebooks.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Attempt to provide table of content for each notebooks
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Second attempt.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Reintroduce transformer image.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Keep trying
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* It's going to fly !
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Remaining of the Table of Content
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Fix inlined elements for the table of content
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Removed anaconda dependencies for Docker images.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Removing notebooks ToC
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added LABEL to each docker image.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Removed old Dockerfile
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Directly use the context and include transformers from here.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Reduce overall size of compiled Docker images.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Install jupyter by default and use CMD for easier launching of the images.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Reduce number of layers in the images.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added README.md for notebooks.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Fix notebooks link in README
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Fix some wording issues.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Added blog notebooks too.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>

* Addressing spelling errors in review comments.
Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
Co-authored-by: default avatarMOI Anthony <xn1t0x@gmail.com>
parent 34de670d
FROM pytorch/pytorch:latest
RUN git clone https://github.com/NVIDIA/apex.git && cd apex && python setup.py install --cuda_ext --cpp_ext
RUN pip install transformers
WORKDIR /workspace
\ No newline at end of file
FROM ubuntu:18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
jupyter \
tensorflow-cpu \
torch
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
\ No newline at end of file
FROM nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
jupyter \
tensorflow \
torch
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
\ No newline at end of file
FROM ubuntu:18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
jupyter \
torch
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
\ No newline at end of file
FROM nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
mkl \
torch
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
\ No newline at end of file
FROM ubuntu:18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
mkl \
tensorflow-cpu
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
\ No newline at end of file
FROM nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
mkl \
tensorflow
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
\ No newline at end of file
{
"cells": [
{
"cell_type": "markdown",
"source": [
"## Tokenization doesn't have to be slow !\n",
"\n",
"### Introduction\n",
"\n",
"Before going deep into any Machine Learning or Deep Learning Natural Language Processing models, every practitioner\n",
"should find a way to map raw input strings to a representation understandable by a trainable model.\n",
"\n",
"One very simple approach would be to split inputs over every space and assign an identifier to each word. This approach\n",
"would look similar to the code below in python\n",
"\n",
"```python\n",
"s = \"very long corpus...\"\n",
"words = s.split(\" \") # Split over space\n",
"vocabulary = dict(enumerate(set(words))) # Map storing the word to it's corresponding id\n",
"```\n",
"\n",
"This approach might work well if your vocabulary remains small as it would store every word (or **token**) present in your original\n",
"input. Moreover, word variations like \"cat\" and \"cats\" would not share the same identifiers even if their meaning is \n",
"quite close.\n",
"\n",
"![tokenization_simple](https://cdn.analyticsvidhya.com/wp-content/uploads/2019/11/tokenization.png)\n",
"\n",
"### Subtoken Tokenization\n",
"\n",
"To overcome the issues described above, recent works have been done on tokenization, leveraging \"subtoken\" tokenization.\n",
"**Subtokens** extends the previous splitting strategy to furthermore explode a word into grammatically logicial sub-components learned\n",
"from the data.\n",
"\n",
"Taking our previous example of the words __cat__ and __cats__, a sub-tokenization of the word __cats__ would be [cat, ##s]. Where the prefix _\"##\"_ indicates a subtoken of the initial input. \n",
"Such training algorithms might extract sub-tokens such as _\"##ing\"_, _\"##ed\"_ over English corpus.\n",
"\n",
"As you might think of, this kind of sub-tokens construction leveraging compositions of _\"pieces\"_ overall reduces the size\n",
"of the vocabulary you have to carry to train a Machine Learning model. On the other side, as one token might be exploded\n",
"into multiple subtokens, the input of your model might increase and become an issue on model with non-linear complexity over the input sequence's length. \n",
" \n",
"![subtokenization](https://nlp.fast.ai/images/multifit_vocabularies.png)\n",
" \n",
"Among all the tokenization algorithms, we can highlight a few subtokens algorithms used in Transformers-based SoTA models : \n",
"\n",
"- [Byte Pair Encoding (BPE) - Neural Machine Translation of Rare Words with Subword Units (Sennrich et al., 2015)](https://arxiv.org/abs/1508.07909)\n",
"- [Word Piece - Japanese and Korean voice search (Schuster, M., and Nakajima, K., 2015)](https://research.google/pubs/pub37842/)\n",
"- [Unigram Language Model - Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates (Kudo, T., 2018)](https://arxiv.org/abs/1804.10959)\n",
"- [Sentence Piece - A simple and language independent subword tokenizer and detokenizer for Neural Text Processing (Taku Kudo and John Richardson, 2018)](https://arxiv.org/abs/1808.06226)\n",
"\n",
"Going through all of them is out of the scope of this notebook, so we will just highlight how you can use them.\n",
"\n",
"### @huggingface/tokenizers library \n",
"Along with the transformers library, we @huggingface provide a blazing fast tokenization library\n",
"able to train, tokenize and decode dozens of Gb/s of text on a common multi-core machine.\n",
"\n",
"The library is written in Rust allowing us to take full advantage of multi-core parallel computations in a native and memory-aware way, on-top of which \n",
"we provide bindings for Python and NodeJS (more bindings may be added in the future). \n",
"\n",
"We designed the library so that it provides all the required blocks to create end-to-end tokenizers in an interchangeable way. In that sense, we provide\n",
"these various components: \n",
"\n",
"- **Normalizer**: Executes all the initial transformations over the initial input string. For example when you need to\n",
"lowercase some text, maybe strip it, or even apply one of the common unicode normalization process, you will add a Normalizer. \n",
"- **PreTokenizer**: In charge of splitting the initial input string. That's the component that decides where and how to\n",
"pre-segment the origin string. The simplest example would be like we saw before, to simply split on spaces.\n",
"- **Model**: Handles all the sub-token discovery and generation, this part is trainable and really dependant\n",
" of your input data.\n",
"- **Post-Processor**: Provides advanced construction features to be compatible with some of the Transformers-based SoTA\n",
"models. For instance, for BERT it would wrap the tokenized sentence around [CLS] and [SEP] tokens.\n",
"- **Decoder**: In charge of mapping back a tokenized input to the original string. The decoder is usually chosen according\n",
"to the `PreTokenizer` we used previously.\n",
"- **Trainer**: Provides training capabilities to each model.\n",
"\n",
"For each of the components above we provide multiple implementations:\n",
"\n",
"- **Normalizer**: Lowercase, Unicode (NFD, NFKD, NFC, NFKC), Bert, Strip, ...\n",
"- **PreTokenizer**: ByteLevel, WhitespaceSplit, CharDelimiterSplit, Metaspace, ...\n",
"- **Model**: WordLevel, BPE, WordPiece\n",
"- **Post-Processor**: BertProcessor, ...\n",
"- **Decoder**: WordLevel, BPE, WordPiece, ...\n",
"\n",
"All of these building blocks can be combined to create working tokenization pipelines. \n",
"In the next section we will go over our first pipeline."
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n",
"is_executing": false
}
}
},
{
"cell_type": "markdown",
"source": [
"Alright, now we are ready to implement our first tokenization pipeline through `tokenizers`. \n",
"\n",
"For this, we will train a Byte-Pair Encoding (BPE) tokenizer on a quite small input for the purpose of this notebook.\n",
"We will work with [the file from peter Norving](https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjYp9Ppru_nAhUBzIUKHfbUAG8QFjAAegQIBhAB&url=https%3A%2F%2Fnorvig.com%2Fbig.txt&usg=AOvVaw2ed9iwhcP1RKUiEROs15Dz).\n",
"This file contains around 130.000 lines of raw text that will be processed by the library to generate a working tokenizer."
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"BIG_FILE_URL = 'https://raw.githubusercontent.com/dscape/spell/master/test/resources/big.txt'\n",
"\n",
"# Let's download the file and save it somewhere\n",
"from requests import get\n",
"with open('big.txt', 'wb') as big_f:\n",
" response = get(BIG_FILE_URL, )\n",
" \n",
" if response.status_code == 200:\n",
" big_f.write(response.content)\n",
" else:\n",
" print(\"Unable to get the file: {}\".format(response.reason))\n"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% code\n",
"is_executing": false
}
}
},
{
"cell_type": "markdown",
"source": [
" \n",
"Now that we have our training data we need to create the overall pipeline for the tokenizer\n",
" "
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n",
"is_executing": false
}
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [],
"source": [
"# For the user's convenience `tokenizers` provides some very high-level classes encapsulating\n",
"# the overall pipeline for various well-known tokenization algorithm. \n",
"# Everything described below can be replaced by the ByteLevelBPETokenizer class. \n",
"\n",
"from tokenizers import Tokenizer\n",
"from tokenizers.decoders import ByteLevel as ByteLevelDecoder\n",
"from tokenizers.models import BPE\n",
"from tokenizers.normalizers import Lowercase, NFKC, Sequence\n",
"from tokenizers.pre_tokenizers import ByteLevel\n",
"\n",
"# First we create an empty Byte-Pair Encoding model (i.e. not trained model)\n",
"tokenizer = Tokenizer(BPE.empty())\n",
"\n",
"# Then we enable lower-casing and unicode-normalization\n",
"# The Sequence normalizer allows us to combine multiple Normalizer, that will be\n",
"# executed in sequence.\n",
"tokenizer.normalizer = Sequence([\n",
" NFKC(),\n",
" Lowercase()\n",
"])\n",
"\n",
"# Out tokenizer also needs a pre-tokenizer responsible for converting the input to a ByteLevel representation.\n",
"tokenizer.pre_tokenizer = ByteLevel()\n",
"\n",
"# And finally, let's plug a decoder so we can recover from a tokenized input to the original one\n",
"tokenizer.decoder = ByteLevelDecoder()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% code\n",
"is_executing": false
}
}
},
{
"cell_type": "markdown",
"source": [
"The overall pipeline is now ready to be trained on the corpus we downloaded earlier in this notebook."
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [
{
"name": "stdout",
"text": [
"Trained vocab size: 25000\n"
],
"output_type": "stream"
}
],
"source": [
"from tokenizers.trainers import BpeTrainer\n",
"\n",
"# We initialize our trainer, giving him the details about the vocabulary we want to generate\n",
"trainer = BpeTrainer(vocab_size=25000, show_progress=True, initial_alphabet=ByteLevel.alphabet())\n",
"tokenizer.train(trainer, [\"big.txt\"])\n",
"\n",
"print(\"Trained vocab size: {}\".format(tokenizer.get_vocab_size()))"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% code\n",
"is_executing": false
}
}
},
{
"cell_type": "markdown",
"source": [
"Et voilà ! You trained your very first tokenizer from scratch using `tokenizers`. Of course, this \n",
"covers only the basics, and you may want to have a look at the `add_special_tokens` or `special_tokens` parameters\n",
"on the `Trainer` class, but the overall process should be very similar.\n",
"\n",
"We can save the content of the model to reuse it later."
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 12,
"outputs": [
{
"data": {
"text/plain": "['./vocab.json', './merges.txt']"
},
"metadata": {},
"output_type": "execute_result",
"execution_count": 12
}
],
"source": [
"# You will see the generated files in the output.\n",
"tokenizer.model.save('.')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% code\n",
"is_executing": false
}
}
},
{
"cell_type": "markdown",
"source": [
"Now, let load the trained model and start using out newly trained tokenizer"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 13,
"outputs": [
{
"name": "stdout",
"text": [
"Encoded string: ['Ġthis', 'Ġis', 'Ġa', 'Ġsimple', 'Ġin', 'put', 'Ġto', 'Ġbe', 'Ġtoken', 'ized']\n",
"Decoded string: this is a simple input to be tokenized\n"
],
"output_type": "stream"
}
],
"source": [
"# Let's tokenizer a simple input\n",
"tokenizer.model = BPE.from_files('vocab.json', 'merges.txt')\n",
"encoding = tokenizer.encode(\"This is a simple input to be tokenized\")\n",
"\n",
"print(\"Encoded string: {}\".format(encoding.tokens))\n",
"\n",
"decoded = tokenizer.decode(encoding.ids)\n",
"print(\"Decoded string: {}\".format(decoded))"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% code\n",
"is_executing": false
}
}
},
{
"cell_type": "markdown",
"source": [
"The Encoding structure exposes multiple properties which are useful when working with transformers models\n",
"\n",
"- normalized_str: The input string after normalization (lower-casing, unicode, stripping, etc.)\n",
"- original_str: The input string as it was provided\n",
"- tokens: The generated tokens with their string representation\n",
"- input_ids: The generated tokens with their integer representation\n",
"- attention_mask: If your input has been padded by the tokenizer, then this would be a vector of 1 for any non padded token and 0 for padded ones.\n",
"- special_token_mask: If your input contains special tokens such as [CLS], [SEP], [MASK], [PAD], then this would be a vector with 1 in places where a special token has been added.\n",
"- type_ids: If your was made of multiple \"parts\" such as (question, context), then this would be a vector with for each token the segment it belongs to.\n",
"- overflowing: If your has been truncated into multiple subparts because of a length limit (for BERT for example the sequence length is limited to 512), this will contain all the remaining overflowing parts."
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"source": [],
"metadata": {
"collapsed": false
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
\ No newline at end of file
This diff is collapsed.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## How can I leverage State-of-the-Art Natural Language Models with only one line of code ?"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Newly introduced in transformers v2.3.0, **pipelines** provides a high-level, easy to use,\n",
"API for doing inference over a variety of downstream-tasks, including: \n",
"\n",
"- Sentence Classification (Sentiment Analysis): Indicate if the overall sentence is either positive or negative. _(Binary Classification task or Logitic Regression task)_\n",
"- Token Classification (Named Entity Recognition, Part-of-Speech tagging): For each sub-entities _(**tokens**)_ in the input, assign them a label _(Classification task)_.\n",
"- Question-Answering: Provided a tuple (question, context) the model should find the span of text in **content** answering the **question**.\n",
"- Mask-Filling: Suggests possible word(s) to fill the masked input with respect to the provided **context**.\n",
"- Feature Extraction: Maps the input to a higher, multi-dimensional space learned from the data.\n",
"\n",
"Pipelines encapsulate the overall process of every NLP process:\n",
" \n",
" 1. Tokenization: Split the initial input into multiple sub-entities with ... properties (i.e. tokens).\n",
" 2. Inference: Maps every tokens into a more meaningful representation. \n",
" 3. Decoding: Use the above representation to generate and/or extract the final output for the underlying task.\n",
"\n",
"The overall API is exposed to the end-user through the `pipeline()` method with the following \n",
"structure:\n",
"\n",
"```python\n",
"from transformers import pipeline\n",
"\n",
"# Using default model and tokenizer for the task\n",
"pipeline(\"<task-name>\")\n",
"\n",
"# Using a user-specified model\n",
"pipeline(\"<task-name>\", model=\"<model_name>\")\n",
"\n",
"# Using custom model/tokenizer as str\n",
"pipeline('<task-name>', model='<model name>', tokenizer='<tokenizer_name>')\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%% code \n"
}
},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "from __future__ imports must occur at the beginning of the file (<ipython-input-29-c3a037bd4c55>, line 5)",
"output_type": "error",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-29-c3a037bd4c55>\"\u001b[0;36m, line \u001b[0;32m5\u001b[0m\n\u001b[0;31m from transformers import pipeline\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m from __future__ imports must occur at the beginning of the file\n"
]
}
],
"source": [
"import numpy as np\n",
"from __future__ import print_function\n",
"from ipywidgets import interact, interactive, fixed, interact_manual\n",
"import ipywidgets as widgets\n",
"from transformers import pipeline"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## 1. Sentence Classification - Sentiment Analysis"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%% code\n"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6aeccfdf51994149bdd1f3d3533e380f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=230.0, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"[{'label': 'POSITIVE', 'score': 0.800251},\n",
" {'label': 'NEGATIVE', 'score': 1.2489903}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nlp_sentence_classif = pipeline('sentiment-analysis')\n",
"nlp_sentence_classif(['Such a nice weather outside !', 'This movie was kind of boring.'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## 2. Token Classification - Named Entity Recognition"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%% code\n"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b5549c53c27346a899af553c977f00bc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=230.0, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"[{'word': 'Hu', 'score': 0.9970937967300415, 'entity': 'I-ORG'},\n",
" {'word': '##gging', 'score': 0.9345750212669373, 'entity': 'I-ORG'},\n",
" {'word': 'Face', 'score': 0.9787060022354126, 'entity': 'I-ORG'},\n",
" {'word': 'French', 'score': 0.9981995820999146, 'entity': 'I-MISC'},\n",
" {'word': 'New', 'score': 0.9983047246932983, 'entity': 'I-LOC'},\n",
" {'word': '-', 'score': 0.8913455009460449, 'entity': 'I-LOC'},\n",
" {'word': 'York', 'score': 0.9979523420333862, 'entity': 'I-LOC'}]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nlp_token_class = pipeline('ner')\n",
"nlp_token_class('Hugging Face is a French company based in New-York.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Question Answering"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%% code\n"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6e56a8edcef44ec2ae838711ecd22d3a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=230.0, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"convert squad examples to features: 100%|██████████| 1/1 [00:00<00:00, 53.05it/s]\n",
"add example index and unique id: 100%|██████████| 1/1 [00:00<00:00, 2673.23it/s]\n"
]
},
{
"data": {
"text/plain": [
"{'score': 0.9632966867654424, 'start': 42, 'end': 50, 'answer': 'New-York.'}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nlp_qa = pipeline('question-answering')\n",
"nlp_qa(context='Hugging Face is a French company based in New-York.', question='Where is based Hugging Face ?')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Text Generation - Mask Filling"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%% code\n"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1930695ea2d24ca98c6d7c13842d377f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=230.0, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"[{'sequence': '<s> Hugging Face is a French company based in Paris</s>',\n",
" 'score': 0.25288480520248413,\n",
" 'token': 2201},\n",
" {'sequence': '<s> Hugging Face is a French company based in Lyon</s>',\n",
" 'score': 0.07639515399932861,\n",
" 'token': 12790},\n",
" {'sequence': '<s> Hugging Face is a French company based in Brussels</s>',\n",
" 'score': 0.055500105023384094,\n",
" 'token': 6497},\n",
" {'sequence': '<s> Hugging Face is a French company based in Geneva</s>',\n",
" 'score': 0.04264815151691437,\n",
" 'token': 11559},\n",
" {'sequence': '<s> Hugging Face is a French company based in France</s>',\n",
" 'score': 0.03868963569402695,\n",
" 'token': 1470}]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nlp_fill = pipeline('fill-mask')\n",
"nlp_fill('Hugging Face is a French company based in <mask>')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Projection - Features Extraction "
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%% code\n"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "92fa4d67290f49a3943dc0abd7529892",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=230.0, style=ProgressStyle(description_…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"(1, 12, 768)"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"nlp_features = pipeline('feature-extraction')\n",
"output = nlp_features('Hugging Face is a French company based in Paris')\n",
"np.array(output).shape # (Samples, Tokens, Vector Size)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Alright ! Now you have a nice picture of what is possible through transformers' pipelines, and there is more\n",
"to come in future releases. \n",
"\n",
"In the meantime, you can try the different pipelines with your own inputs"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%% code\n"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "261ae9fa30e84d1d84a3b0d9682ac477",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Task:', index=1, options=('sentiment-analysis', 'ner', 'fill_mask'), value='ner')"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ddc51b71c6eb40e5ab60998664e6a857",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Text(value='', description='Your input:', placeholder='Enter something')"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'word': 'Paris', 'score': 0.9991844296455383, 'entity': 'I-LOC'}]\n",
"[{'sequence': '<s> I\\'m from Paris.\"</s>', 'score': 0.224044069647789, 'token': 72}, {'sequence': \"<s> I'm from Paris.)</s>\", 'score': 0.16959427297115326, 'token': 1592}, {'sequence': \"<s> I'm from Paris.]</s>\", 'score': 0.10994981974363327, 'token': 21838}, {'sequence': '<s> I\\'m from Paris!\"</s>', 'score': 0.0706234946846962, 'token': 2901}, {'sequence': \"<s> I'm from Paris.</s>\", 'score': 0.0698278620839119, 'token': 4}]\n",
"[{'sequence': \"<s> I'm from Paris and London</s>\", 'score': 0.12238534539937973, 'token': 928}, {'sequence': \"<s> I'm from Paris and Brussels</s>\", 'score': 0.07107886672019958, 'token': 6497}, {'sequence': \"<s> I'm from Paris and Belgium</s>\", 'score': 0.040912602096796036, 'token': 7320}, {'sequence': \"<s> I'm from Paris and Berlin</s>\", 'score': 0.039884064346551895, 'token': 5459}, {'sequence': \"<s> I'm from Paris and Melbourne</s>\", 'score': 0.038133684545755386, 'token': 5703}]\n",
"[{'sequence': '<s> I like go to sleep</s>', 'score': 0.08942786604166031, 'token': 3581}, {'sequence': '<s> I like go to bed</s>', 'score': 0.07789064943790436, 'token': 3267}, {'sequence': '<s> I like go to concerts</s>', 'score': 0.06356740742921829, 'token': 12858}, {'sequence': '<s> I like go to school</s>', 'score': 0.03660670667886734, 'token': 334}, {'sequence': '<s> I like go to dinner</s>', 'score': 0.032155368477106094, 'token': 3630}]\n"
]
}
],
"source": [
"task = widgets.Dropdown(\n",
" options=['sentiment-analysis', 'ner', 'fill_mask'],\n",
" value='ner',\n",
" description='Task:',\n",
" disabled=False\n",
")\n",
"\n",
"input = widgets.Text(\n",
" value='',\n",
" placeholder='Enter something',\n",
" description='Your input:',\n",
" disabled=False\n",
")\n",
"\n",
"def forward(_):\n",
" if len(input.value) > 0: \n",
" if task.value == 'ner':\n",
" output = nlp_token_class(input.value)\n",
" elif task.value == 'sentiment-analysis':\n",
" output = nlp_sentence_classif(input.value)\n",
" else:\n",
" if input.value.find('<mask>') == -1:\n",
" output = nlp_fill(input.value + ' <mask>')\n",
" else:\n",
" output = nlp_fill(input.value) \n",
" print(output)\n",
"\n",
"input.on_submit(forward)\n",
"display(task, input)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%% Question Answering\n"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5ae68677bd8a41f990355aa43840d3f8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Textarea(value='Einstein is famous for the general theory of relativity', description='Context:', placeholder=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "14bcfd9a2c5a47e6b1383989ab7632c8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Text(value='Why is Einstein famous for ?', description='Question:', placeholder='Enter something')"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"convert squad examples to features: 100%|██████████| 1/1 [00:00<00:00, 168.83it/s]\n",
"add example index and unique id: 100%|██████████| 1/1 [00:00<00:00, 1919.59it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.40340670623875496, 'start': 27, 'end': 54, 'answer': 'general theory of relativity'}\n"
]
}
],
"source": [
"context = widgets.Textarea(\n",
" value='Einstein is famous for the general theory of relativity',\n",
" placeholder='Enter something',\n",
" description='Context:',\n",
" disabled=False\n",
")\n",
"\n",
"query = widgets.Text(\n",
" value='Why is Einstein famous for ?',\n",
" placeholder='Enter something',\n",
" description='Question:',\n",
" disabled=False\n",
")\n",
"\n",
"def forward(_):\n",
" if len(context.value) > 0 and len(query.value) > 0: \n",
" output = nlp_qa(question=query.value, context=context.value) \n",
" print(output)\n",
"\n",
"query.on_submit(forward)\n",
"display(context, query)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"source": [],
"metadata": {
"collapsed": false
}
}
}
},
"nbformat": 4,
"nbformat_minor": 1
}
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
This source diff could not be displayed because it is too large. You can view the blob instead.
This diff is collapsed.
# Transformers Notebooks
You can find here a list of the official notebooks provided by Hugging Face.
Also, we would like to list here interesting content created by the community.
If you wrote some notebook(s) leveraging transformers and would like be listed here, please open a
Pull Request and we'll review it so it can be included here.
## Hugging Face's notebooks :hugs:
| Notebook | Description | |
|:----------|:-------------:|------:|
| [Getting Started Tokenizers](01-training_tokenizers.ipynb) | How to train and use your very own tokenizer |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/transformers/blob/docker-notebooks/notebooks/01-training-tokenizers.ipynb) |
| [Getting Started Transformers](02-transformers.ipynb) | How to easily start using transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/transformers/blob/docker-notebooks/notebooks/01-training-tokenizers.ipynb) |
| [How to use Pipelines](03-pipelines.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/transformers/blob/docker-notebooks/notebooks/01-training-tokenizers.ipynb) |
| [How to train a language model](https://github.com/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb)| Highlight all the steps to effectively train Transformer model on custom data | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vochicong/blog/blob/fix-notebook-add-tokenizer-config/notebooks/01_how_to_train.ipynb)|
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment