Unverified Commit 7186ca62 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Multi predictions trainer (#7126)

* Allow multiple outputs

* Formatting

* Move the unwrapping before metrics

* Fix typo

* Add test for non-supported config options
parent 52d250f6
......@@ -1269,6 +1269,13 @@ class Trainer:
prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
)
assert not getattr(
self.model.config, "output_attentions", False
), "The prediction loop does not work with `output_attentions=True`."
assert not getattr(
self.model.config, "output_hidden_states", False
), "The prediction loop does not work with `output_hidden_states=True`."
model = self.model
# multi-gpu eval
if self.args.n_gpu > 1:
......@@ -1300,7 +1307,7 @@ class Trainer:
if loss is not None:
eval_losses.extend([loss] * batch_size)
if logits is not None:
preds = logits if preds is None else torch.cat((preds, logits), dim=0)
preds = logits if preds is None else tuple(torch.cat((p, l), dim=0) for p, l in zip(preds, logits))
if labels is not None:
label_ids = labels if label_ids is None else torch.cat((label_ids, labels), dim=0)
......@@ -1311,13 +1318,13 @@ class Trainer:
if self.args.local_rank != -1:
# In distributed mode, concatenate all results from all nodes:
if preds is not None:
preds = distributed_concat(preds, num_total_examples=self.num_examples(dataloader))
preds = tuple(distributed_concat(p, num_total_examples=self.num_examples(dataloader)) for p in preds)
if label_ids is not None:
label_ids = distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader))
elif is_torch_tpu_available():
# tpu-comment: Get all predictions and labels from all worker shards of eval dataset
if preds is not None:
preds = xm.mesh_reduce("eval_preds", preds, torch.cat)
preds = tuple(xm.mesh_reduce(f"eval_preds_{i}", p, torch.cat) for i, p in enumerate(preds))
if label_ids is not None:
label_ids = xm.mesh_reduce("eval_label_ids", label_ids, torch.cat)
if eval_losses is not None:
......@@ -1325,7 +1332,9 @@ class Trainer:
# Finally, turn the aggregated tensors into numpy arrays.
if preds is not None:
preds = preds.cpu().numpy()
preds = tuple(p.cpu().numpy() for p in preds)
if len(preds) == 1:
preds = preds[0]
if label_ids is not None:
label_ids = label_ids.cpu().numpy()
......@@ -1380,11 +1389,13 @@ class Trainer:
with torch.no_grad():
outputs = model(**inputs)
if has_labels:
loss, logits = outputs[:2]
loss = loss.mean().item()
# The .mean() is to reduce in case of distributed training
loss = outputs[0].mean().item()
logits = outputs[1:]
else:
loss = None
logits = outputs[0]
# Slicing so we get a tuple even if `outputs` is a `ModelOutput`.
logits = outputs[:]
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index if has_labels else self.args.past_index - 1]
......@@ -1394,7 +1405,7 @@ class Trainer:
labels = inputs.get("labels")
if labels is not None:
labels = labels.detach()
return (loss, logits.detach(), labels)
return (loss, tuple(l.detach() for l in logits), labels)
def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
"""
......
import random
from typing import Any, Dict, List, NamedTuple, Optional, Union
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
......@@ -42,12 +42,12 @@ class EvalPrediction(NamedTuple):
label_ids (:obj:`np.ndarray`): Targets to be matched.
"""
predictions: np.ndarray
predictions: Union[np.ndarray, Tuple[np.ndarray]]
label_ids: np.ndarray
class PredictionOutput(NamedTuple):
predictions: np.ndarray
predictions: Union[np.ndarray, Tuple[np.ndarray]]
label_ids: Optional[np.ndarray]
metrics: Optional[Dict[str, float]]
......
......@@ -61,22 +61,24 @@ if is_torch_available():
return iter(self.parse_file())
class RegressionModel(torch.nn.Module):
def __init__(self, a=0, b=0):
def __init__(self, a=0, b=0, double_output=False):
super().__init__()
self.a = torch.nn.Parameter(torch.tensor(a).float())
self.b = torch.nn.Parameter(torch.tensor(b).float())
self.double_output = double_output
self.config = None
def forward(self, input_x=None, labels=None):
y = input_x * self.a + self.b
if labels is None:
return (y,)
return (y, y) if self.double_output else (y,)
loss = torch.nn.functional.mse_loss(y, labels)
return (loss, y)
return (loss, y, y) if self.double_output else (loss, y)
def get_regression_trainer(a=0, b=0, train_len=64, eval_len=64, **kwargs):
def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, **kwargs):
train_dataset = RegressionDataset(length=train_len)
eval_dataset = RegressionDataset(length=eval_len)
model = RegressionModel(a, b)
model = RegressionModel(a, b, double_output)
compute_metrics = kwargs.pop("compute_metrics", None)
data_collator = kwargs.pop("data_collator", None)
optimizers = kwargs.pop("optimizers", (None, None))
......@@ -202,6 +204,14 @@ class TrainerIntegrationTest(unittest.TestCase):
x = trainer.eval_dataset.x
self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
# With more than one output of the model
trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
preds = trainer.predict(trainer.eval_dataset).predictions
x = trainer.eval_dataset.x
self.assertTrue(len(preds), 2)
self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
def test_trainer_with_datasets(self):
np.random.seed(42)
x = np.random.normal(size=(64,)).astype(np.float32)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment