Commit 6e011690 authored by Lorenzo Ampil's avatar Lorenzo Ampil
Browse files

Add special tokens to documentation for the rest of pytorch model examples #1561

parent 3a52b657
...@@ -261,7 +261,7 @@ class CTRLModel(CTRLPreTrainedModel): ...@@ -261,7 +261,7 @@ class CTRLModel(CTRLPreTrainedModel):
tokenizer = CTRLTokenizer.from_pretrained('ctrl') tokenizer = CTRLTokenizer.from_pretrained('ctrl')
model = CTRLModel.from_pretrained('ctrl') model = CTRLModel.from_pretrained('ctrl')
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -438,7 +438,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel): ...@@ -438,7 +438,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
tokenizer = CTRLTokenizer.from_pretrained('ctrl') tokenizer = CTRLTokenizer.from_pretrained('ctrl')
model = CTRLLMHeadModel.from_pretrained('ctrl') model = CTRLLMHeadModel.from_pretrained('ctrl')
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids) outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2] loss, logits = outputs[:2]
......
...@@ -411,7 +411,7 @@ class DistilBertModel(DistilBertPreTrainedModel): ...@@ -411,7 +411,7 @@ class DistilBertModel(DistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertModel.from_pretrained('distilbert-base-uncased') model = DistilBertModel.from_pretrained('distilbert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -495,7 +495,7 @@ class DistilBertForMaskedLM(DistilBertPreTrainedModel): ...@@ -495,7 +495,7 @@ class DistilBertForMaskedLM(DistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased') model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids) outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2] loss, prediction_scores = outputs[:2]
...@@ -569,7 +569,7 @@ class DistilBertForSequenceClassification(DistilBertPreTrainedModel): ...@@ -569,7 +569,7 @@ class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased') model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels) outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2] loss, logits = outputs[:2]
...@@ -643,7 +643,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel): ...@@ -643,7 +643,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased') model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1]) start_positions = torch.tensor([1])
end_positions = torch.tensor([3]) end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
......
...@@ -338,7 +338,7 @@ class GPT2Model(GPT2PreTrainedModel): ...@@ -338,7 +338,7 @@ class GPT2Model(GPT2PreTrainedModel):
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -503,7 +503,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel): ...@@ -503,7 +503,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids) outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2] loss, logits = outputs[:2]
......
...@@ -343,7 +343,7 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel): ...@@ -343,7 +343,7 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTModel.from_pretrained('openai-gpt') model = OpenAIGPTModel.from_pretrained('openai-gpt')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -478,7 +478,7 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel): ...@@ -478,7 +478,7 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt') model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids) outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2] loss, logits = outputs[:2]
......
...@@ -154,7 +154,7 @@ class RobertaModel(BertModel): ...@@ -154,7 +154,7 @@ class RobertaModel(BertModel):
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaModel.from_pretrained('roberta-base') model = RobertaModel.from_pretrained('roberta-base')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -209,7 +209,7 @@ class RobertaForMaskedLM(BertPreTrainedModel): ...@@ -209,7 +209,7 @@ class RobertaForMaskedLM(BertPreTrainedModel):
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaForMaskedLM.from_pretrained('roberta-base') model = RobertaForMaskedLM.from_pretrained('roberta-base')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids) outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2] loss, prediction_scores = outputs[:2]
...@@ -303,7 +303,7 @@ class RobertaForSequenceClassification(BertPreTrainedModel): ...@@ -303,7 +303,7 @@ class RobertaForSequenceClassification(BertPreTrainedModel):
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaForSequenceClassification.from_pretrained('roberta-base') model = RobertaForSequenceClassification.from_pretrained('roberta-base')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels) outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2] loss, logits = outputs[:2]
......
...@@ -578,7 +578,7 @@ class TransfoXLModel(TransfoXLPreTrainedModel): ...@@ -578,7 +578,7 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103') tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel.from_pretrained('transfo-xl-wt103') model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states, mems = outputs[:2] last_hidden_states, mems = outputs[:2]
...@@ -808,7 +808,7 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel): ...@@ -808,7 +808,7 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103') tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103') model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
prediction_scores, mems = outputs[:2] prediction_scores, mems = outputs[:2]
......
...@@ -332,7 +332,7 @@ class XLMModel(XLMPreTrainedModel): ...@@ -332,7 +332,7 @@ class XLMModel(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMModel.from_pretrained('xlm-mlm-en-2048') model = XLMModel.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -607,7 +607,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel): ...@@ -607,7 +607,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -671,7 +671,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel): ...@@ -671,7 +671,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048') model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels) outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2] loss, logits = outputs[:2]
...@@ -754,7 +754,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel): ...@@ -754,7 +754,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnsweringSimple.from_pretrained('xlm-mlm-en-2048') model = XLMForQuestionAnsweringSimple.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1]) start_positions = torch.tensor([1])
end_positions = torch.tensor([3]) end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
...@@ -849,7 +849,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel): ...@@ -849,7 +849,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048') model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1]) start_positions = torch.tensor([1])
end_positions = torch.tensor([3]) end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
......
...@@ -584,7 +584,7 @@ class XLNetModel(XLNetPreTrainedModel): ...@@ -584,7 +584,7 @@ class XLNetModel(XLNetPreTrainedModel):
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetModel.from_pretrained('xlnet-large-cased') model = XLNetModel.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...@@ -900,7 +900,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel): ...@@ -900,7 +900,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased') model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
# We show how to setup inputs to predict a next token using a bi-directional context. # We show how to setup inputs to predict a next token using a bi-directional context.
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True)).unsqueeze(0) # We will predict the masked token
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
...@@ -983,7 +983,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel): ...@@ -983,7 +983,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased') model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels) outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2] loss, logits = outputs[:2]
...@@ -1163,7 +1163,7 @@ class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel): ...@@ -1163,7 +1163,7 @@ class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased') model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1]) start_positions = torch.tensor([1])
end_positions = torch.tensor([3]) end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
...@@ -1276,7 +1276,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel): ...@@ -1276,7 +1276,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased') model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1]) start_positions = torch.tensor([1])
end_positions = torch.tensor([3]) end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment