Unverified Commit 6b1ff250 authored by Victor SANH's avatar Victor SANH Committed by GitHub
Browse files

fix n_gpu count when no_cuda flag is activated (#3077)

* fix n_gpu count when no_cuda flag is activated

* someone was left behind
parent 298bed16
...@@ -622,7 +622,7 @@ def main(): ...@@ -622,7 +622,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -720,7 +720,7 @@ def main(): ...@@ -720,7 +720,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -520,7 +520,7 @@ def main(): ...@@ -520,7 +520,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -492,7 +492,7 @@ def main(): ...@@ -492,7 +492,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -557,7 +557,7 @@ def main(): ...@@ -557,7 +557,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -338,7 +338,7 @@ def main(): ...@@ -338,7 +338,7 @@ def main():
# Setup devices and distributed training # Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: else:
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank) args.device = torch.device("cuda", args.local_rank)
......
...@@ -189,7 +189,7 @@ def main(): ...@@ -189,7 +189,7 @@ def main():
args = parser.parse_args() args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
set_seed(args) set_seed(args)
......
...@@ -575,7 +575,7 @@ def main(): ...@@ -575,7 +575,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -663,7 +663,7 @@ def main(): ...@@ -663,7 +663,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -535,7 +535,7 @@ def main(): ...@@ -535,7 +535,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -725,7 +725,7 @@ def main(): ...@@ -725,7 +725,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -530,7 +530,7 @@ def main(): ...@@ -530,7 +530,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
...@@ -594,7 +594,7 @@ def main(): ...@@ -594,7 +594,7 @@ def main():
# Setup CUDA, GPU & distributed training # Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count() args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment