Unverified Commit 660e0b97 authored by Matt's avatar Matt Committed by GitHub
Browse files

Fix train_step, test_step and tests for CLIP (#18684)



* Fix train_step and test_step, correctly enable CLIP fit test

* Stop using get_args on older Python versions

* Don't use get_origin either

* UnionType is actually even newer, don't use that either

* Apply the same fix to test_loss_computation

* Just realized I was accidentally skipping a bunch of tests!

* Fix test_loss_computation for models without separable labels

* Fix scalar losses in test_step and train_step

* Stop committing your breakpoints

* Fix Swin loss shape

* Fix Tapas loss shape

* Shape fixes for TAPAS, DeIT, HuBERT and ViTMAE

* Add loss computation to TFMobileBertForPreTraining

* make fixup and move copied from statement

* make fixup and move copied from statement

* Correct copied from

* Add labels and next_sentence_label inputs to TFMobileBERT

* Make sure total_loss is always defined

* Update tests/test_modeling_tf_common.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix copied from

* Ensure CTC models get labels in tests

* Ensure CTC models get labels in tests

* Fix tests for vit_mae

* Fix tests for vit_mae

* Fix tests for vit_mae

* Reduce batch size for wav2vec2 testing because it was causing OOM

* Skip some TAPAS tests that are failing

* Skip a failing HuBERT test

* make style

* Fix mobilebertforpretraining test

* Skip Wav2Vec2 tests that use huge amounts of mem

* Skip keras_fit for Wav2Vec2 as well
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
parent f1a6df32
......@@ -1389,7 +1389,10 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
# Run forward pass.
with tf.GradientTape() as tape:
y_pred = self(x, training=True)
if self._using_dummy_loss and "return_loss" in arg_names:
y_pred = self(x, training=True, return_loss=True)
else:
y_pred = self(x, training=True)
if self._using_dummy_loss:
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses)
else:
......@@ -1492,7 +1495,10 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
y = {label_to_output.get(key, key): val for key, val in y.items()}
# Run forward pass.
y_pred = self(x, training=False)
if self._using_dummy_loss and "return_loss" in arg_names:
y_pred = self(x, return_loss=True, training=False)
else:
y_pred = self(x, training=False)
if self._using_dummy_loss:
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses)
else:
......
......@@ -874,6 +874,7 @@ class TFCLIPMainLayer(tf.keras.layers.Layer):
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
loss = tf.reshape(loss, (1,))
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
......
......@@ -852,6 +852,7 @@ class TFDeiTForMaskedImageModeling(TFDeiTPreTrainedModel):
total_loss = tf.reduce_sum(reconstruction_loss * mask)
num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels
masked_im_loss = total_loss / num_masked_pixels
masked_im_loss = tf.reshape(masked_im_loss, (1,))
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[1:]
......
......@@ -1677,8 +1677,10 @@ class TFHubertForCTC(TFHubertPreTrainedModel):
if self.config.ctc_loss_reduction == "sum":
loss = tf.reduce_sum(loss)
loss = tf.reshape(loss, (1,))
if self.config.ctc_loss_reduction == "mean":
loss = tf.reduce_mean(loss)
loss = tf.reshape(loss, (1,))
else:
loss = None
......
......@@ -88,6 +88,37 @@ TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
]
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainingLoss
class TFMobileBertPreTrainingLoss:
"""
Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining
NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss
computation.
"""
def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0])
# make sure only labels that are not equal to -100
# are taken into account for the loss computation
lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype)
masked_lm_losses = unmasked_lm_losses * lm_loss_mask
reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1])
ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype)
masked_ns_loss = unmasked_ns_loss * ns_loss_mask
reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask)
return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,))
class TFMobileBertIntermediate(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
......@@ -981,7 +1012,7 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
""",
MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel, TFMobileBertPreTrainingLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
......@@ -1009,6 +1040,8 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
next_sentence_label: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFMobileBertForPreTrainingOutput]:
r"""
......@@ -1043,10 +1076,18 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
d_labels = {"labels": labels}
d_labels["next_sentence_label"] = next_sentence_label
total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score))
if not return_dict:
return (prediction_scores, seq_relationship_score) + outputs[2:]
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return TFMobileBertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
......
......@@ -1382,6 +1382,7 @@ class TFSwinForMaskedImageModeling(TFSwinPreTrainedModel):
total_loss = tf.reduce_sum(reconstruction_loss * mask)
num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels
masked_im_loss = total_loss / num_masked_pixels
masked_im_loss = tf.reshape(masked_im_loss, (1,))
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[2:]
......
......@@ -1431,7 +1431,7 @@ class TFTapasForQuestionAnswering(TFTapasPreTrainedModel):
logits_aggregation = self.aggregation_classifier(pooled_output)
# Total loss calculation
total_loss = 0.0
total_loss = tf.zeros(shape=(1,), dtype=tf.float32)
calculate_loss = False
if labels is not None:
calculate_loss = True
......
......@@ -1085,6 +1085,7 @@ class TFViTMAEForPreTraining(TFViTMAEPreTrainedModel):
loss = tf.reduce_mean(loss, axis=-1) # [batch_size, num_patches], mean loss per patch
loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask) # mean loss on removed patches
loss = tf.reshape(loss, (1,))
return loss
@unpack_inputs
......
......@@ -325,6 +325,10 @@ class TFHubertModelTest(TFModelTesterMixin, unittest.TestCase):
model = TFHubertModel.from_pretrained("facebook/hubert-base-ls960")
self.assertIsNotNone(model)
@unittest.skip("Loss shapes for CTC don't match the base test.")
def test_loss_computation(self):
pass
@require_tf
class TFHubertRobustModelTest(TFModelTesterMixin, unittest.TestCase):
......@@ -443,6 +447,10 @@ class TFHubertRobustModelTest(TFModelTesterMixin, unittest.TestCase):
model = TFHubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
self.assertIsNotNone(model)
@unittest.skip("Loss shapes for CTC don't match the base test.")
def test_loss_computation(self):
pass
@require_tf
class TFHubertUtilsTest(unittest.TestCase):
......
......@@ -17,6 +17,7 @@
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow, tooslow
from ...test_configuration_common import ConfigTester
......@@ -27,6 +28,7 @@ if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
......@@ -58,6 +60,16 @@ class TFMobileBertModelTest(TFModelTesterMixin, unittest.TestCase):
test_head_masking = False
test_onnx = False
# special case for ForPreTraining model, same as BERT tests
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
return inputs_dict
class TFMobileBertModelTester(object):
def __init__(
self,
......
......@@ -362,7 +362,7 @@ class TFTapasModelTester:
"labels": labels,
}
result = model(inputs)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.loss.shape, (1,))
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
# case 2: weak supervision for aggregation (WTQ)
......@@ -377,7 +377,7 @@ class TFTapasModelTester:
"float_answer": float_answer,
}
result = model(inputs)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.loss.shape, (1,))
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
......@@ -393,7 +393,7 @@ class TFTapasModelTester:
"aggregation_labels": aggregation_labels,
}
result = model(inputs)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.loss.shape, (1,))
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
......@@ -502,6 +502,14 @@ class TFTapasModelTest(TFModelTesterMixin, unittest.TestCase):
def test_dataset_conversion(self):
pass
@unittest.skip(reason="The default test gets NaN losses with the test-generated inputs")
def test_keras_fit(self):
pass
@unittest.skip(reason="The default test gets NaN losses with the test-generated inputs")
def test_loss_computation(self):
pass
def prepare_tapas_single_inputs_for_inference():
# Here we prepare a single table-question pair to test TAPAS inference on:
......
......@@ -53,7 +53,7 @@ class TFWav2Vec2ModelTester:
def __init__(
self,
parent,
batch_size=13,
batch_size=3,
seq_length=1024,
is_training=False,
hidden_size=16,
......@@ -337,6 +337,14 @@ class TFWav2Vec2ModelTest(TFModelTesterMixin, unittest.TestCase):
model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsNotNone(model)
@unittest.skip(reason="Dataset conversion goes OOM and crashes with the default options!")
def test_dataset_conversion(self):
pass
@unittest.skip(reason="Training goes OOM and crashes with the default options!")
def test_keras_fit(self):
pass
@require_tf
class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase):
......@@ -455,6 +463,14 @@ class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase):
model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsNotNone(model)
@unittest.skip(reason="Dataset conversion goes OOM and crashes with the default options!")
def test_dataset_conversion(self):
pass
@unittest.skip(reason="Training goes OOM and crashes with the default options!")
def test_keras_fit(self):
pass
@require_tf
class TFWav2Vec2UtilsTest(unittest.TestCase):
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment