Unverified Commit 65cf33e7 authored by James Barry's avatar James Barry Committed by GitHub
Browse files

Add type hints to XLM model (PyTorch) (#16108)

parent 84162068
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
import itertools import itertools
import math import math
from dataclasses import dataclass from dataclasses import dataclass
from typing import Optional, Tuple from typing import Dict, Optional, Tuple, Union
import numpy as np import numpy as np
import torch import torch
...@@ -494,19 +494,19 @@ class XLMModel(XLMPreTrainedModel): ...@@ -494,19 +494,19 @@ class XLMModel(XLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
langs=None, langs: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
lengths=None, lengths: Optional[torch.Tensor] = None,
cache=None, cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -716,20 +716,20 @@ class XLMWithLMHeadModel(XLMPreTrainedModel): ...@@ -716,20 +716,20 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
langs=None, langs: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
lengths=None, lengths: Optional[torch.Tensor] = None,
cache=None, cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, MaskedLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
...@@ -795,20 +795,20 @@ class XLMForSequenceClassification(XLMPreTrainedModel): ...@@ -795,20 +795,20 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
langs=None, langs: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
lengths=None, lengths: Optional[torch.Tensor] = None,
cache=None, cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -896,21 +896,21 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel): ...@@ -896,21 +896,21 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
langs=None, langs: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
lengths=None, lengths: Optional[torch.Tensor] = None,
cache=None, cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
start_positions=None, start_positions: Optional[torch.Tensor] = None,
end_positions=None, end_positions: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, QuestionAnsweringModelOutput]:
r""" r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss. Labels for position (index) of the start of the labelled span for computing the token classification loss.
...@@ -996,24 +996,24 @@ class XLMForQuestionAnswering(XLMPreTrainedModel): ...@@ -996,24 +996,24 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
@replace_return_docstrings(output_type=XLMForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=XLMForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
langs=None, langs: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
lengths=None, lengths: Optional[torch.Tensor] = None,
cache=None, cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
start_positions=None, start_positions: Optional[torch.Tensor] = None,
end_positions=None, end_positions: Optional[torch.Tensor] = None,
is_impossible=None, is_impossible: Optional[torch.Tensor] = None,
cls_index=None, cls_index: Optional[torch.Tensor] = None,
p_mask=None, p_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, XLMForQuestionAnsweringOutput]:
r""" r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss. Labels for position (index) of the start of the labelled span for computing the token classification loss.
...@@ -1124,20 +1124,20 @@ class XLMForTokenClassification(XLMPreTrainedModel): ...@@ -1124,20 +1124,20 @@ class XLMForTokenClassification(XLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
langs=None, langs: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
lengths=None, lengths: Optional[torch.Tensor] = None,
cache=None, cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
...@@ -1208,20 +1208,20 @@ class XLMForMultipleChoice(XLMPreTrainedModel): ...@@ -1208,20 +1208,20 @@ class XLMForMultipleChoice(XLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
langs=None, langs: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
lengths=None, lengths: Optional[torch.Tensor] = None,
cache=None, cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, MultipleChoiceModelOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment