"...git@developer.sourcefind.cn:chenpangpang/open-webui.git" did not exist on "4ecf9dd62d8e53bfca08bc38a46019b2c9f2b995"
Unverified Commit 659829b6 authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

MaskFormer - enable return_dict in order to compile (#25052)

* Enable return_dict in order to compile

* Update tests
parent b914ec98
......@@ -1254,11 +1254,16 @@ class MaskFormerPixelDecoder(nn.Module):
self.fpn = MaskFormerFPNModel(*args, feature_size=feature_size, **kwargs)
self.mask_projection = nn.Conv2d(feature_size, mask_feature_size, kernel_size=3, padding=1)
def forward(self, features: List[Tensor], output_hidden_states: bool = False) -> MaskFormerPixelDecoderOutput:
def forward(
self, features: List[Tensor], output_hidden_states: bool = False, return_dict: bool = True
) -> MaskFormerPixelDecoderOutput:
fpn_features = self.fpn(features)
# we use the last feature map
last_feature_projected = self.mask_projection(fpn_features[-1])
if not return_dict:
return (last_feature_projected, tuple(fpn_features)) if output_hidden_states else (last_feature_projected,)
return MaskFormerPixelDecoderOutput(
last_hidden_state=last_feature_projected, hidden_states=tuple(fpn_features) if output_hidden_states else ()
)
......@@ -1387,9 +1392,20 @@ class MaskFormerPixelLevelModule(nn.Module):
lateral_widths=feature_channels[:-1],
)
def forward(self, pixel_values: Tensor, output_hidden_states: bool = False) -> MaskFormerPixelLevelModuleOutput:
def forward(
self, pixel_values: Tensor, output_hidden_states: bool = False, return_dict: bool = True
) -> MaskFormerPixelLevelModuleOutput:
features = self.encoder(pixel_values).feature_maps
decoder_output = self.decoder(features, output_hidden_states)
decoder_output = self.decoder(features, output_hidden_states, return_dict=return_dict)
if not return_dict:
last_hidden_state = decoder_output[0]
outputs = (features[-1], last_hidden_state)
if output_hidden_states:
hidden_states = decoder_output[1]
outputs = outputs + (tuple(features),) + (hidden_states,)
return outputs
return MaskFormerPixelLevelModuleOutput(
# the last feature is actually the output from the last layer
encoder_last_hidden_state=features[-1],
......@@ -1414,7 +1430,11 @@ class MaskFormerTransformerModule(nn.Module):
self.decoder = DetrDecoder(config=config.decoder_config)
def forward(
self, image_features: Tensor, output_hidden_states: bool = False, output_attentions: bool = False
self,
image_features: Tensor,
output_hidden_states: bool = False,
output_attentions: bool = False,
return_dict: Optional[bool] = None,
) -> DetrDecoderOutput:
if self.input_projection is not None:
image_features = self.input_projection(image_features)
......@@ -1438,7 +1458,7 @@ class MaskFormerTransformerModule(nn.Module):
query_position_embeddings=queries_embeddings,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=None,
return_dict=return_dict,
)
return decoder_output
......@@ -1593,9 +1613,11 @@ class MaskFormerModel(MaskFormerPreTrainedModel):
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
pixel_level_module_output = self.pixel_level_module(pixel_values, output_hidden_states)
image_features = pixel_level_module_output.encoder_last_hidden_state
pixel_embeddings = pixel_level_module_output.decoder_last_hidden_state
pixel_level_module_output = self.pixel_level_module(
pixel_values, output_hidden_states, return_dict=return_dict
)
image_features = pixel_level_module_output[0]
pixel_embeddings = pixel_level_module_output[1]
transformer_module_output = self.transformer_module(image_features, output_hidden_states, output_attentions)
queries = transformer_module_output.last_hidden_state
......@@ -1606,9 +1628,9 @@ class MaskFormerModel(MaskFormerPreTrainedModel):
hidden_states = None
if output_hidden_states:
encoder_hidden_states = pixel_level_module_output.encoder_hidden_states
pixel_decoder_hidden_states = pixel_level_module_output.decoder_hidden_states
transformer_decoder_hidden_states = transformer_module_output.hidden_states
encoder_hidden_states = pixel_level_module_output[2]
pixel_decoder_hidden_states = pixel_level_module_output[3]
transformer_decoder_hidden_states = transformer_module_output[1]
hidden_states = encoder_hidden_states + pixel_decoder_hidden_states + transformer_decoder_hidden_states
output = MaskFormerModelOutput(
......@@ -1803,13 +1825,25 @@ class MaskFormerForInstanceSegmentation(MaskFormerPreTrainedModel):
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs: MaskFormerModelOutput = self.model(
raw_outputs = self.model(
pixel_values,
pixel_mask,
output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
return_dict=True,
return_dict=return_dict,
output_attentions=output_attentions,
)
# We need to have raw_outputs optionally be returned as a dict to use torch.compile. For backwards
# compatibility we convert to a dataclass for the rest of the model logic
outputs = MaskFormerModelOutput(
encoder_last_hidden_state=raw_outputs[0],
pixel_decoder_last_hidden_state=raw_outputs[1],
transformer_decoder_last_hidden_state=raw_outputs[2],
encoder_hidden_states=raw_outputs[3] if output_hidden_states else None,
pixel_decoder_hidden_states=raw_outputs[4] if output_hidden_states else None,
transformer_decoder_hidden_states=raw_outputs[5] if output_hidden_states else None,
hidden_states=raw_outputs[6] if output_hidden_states else None,
attentions=raw_outputs[-1] if output_attentions else None,
)
loss, loss_dict, auxiliary_logits = None, None, None
......@@ -1827,16 +1861,18 @@ class MaskFormerForInstanceSegmentation(MaskFormerPreTrainedModel):
if not output_auxiliary_logits:
auxiliary_logits = None
output = MaskFormerForInstanceSegmentationOutput(
if not return_dict:
output = tuple(
v
for v in (loss, class_queries_logits, masks_queries_logits, auxiliary_logits, *outputs.values())
if v is not None
)
return output
return MaskFormerForInstanceSegmentationOutput(
loss=loss,
**outputs,
class_queries_logits=class_queries_logits,
masks_queries_logits=masks_queries_logits,
auxiliary_logits=auxiliary_logits,
)
if not return_dict:
output = tuple(v for v in output.values())
if loss is not None:
output = ((loss)) + output
return output
......@@ -14,6 +14,7 @@
# limitations under the License.
""" Testing suite for the PyTorch MaskFormer model. """
import copy
import inspect
import unittest
......@@ -54,6 +55,8 @@ class MaskFormerModelTester:
max_size=32 * 6,
num_labels=4,
mask_feature_size=32,
num_hidden_layers=2,
num_attention_heads=2,
):
self.parent = parent
self.batch_size = batch_size
......@@ -65,6 +68,9 @@ class MaskFormerModelTester:
self.max_size = max_size
self.num_labels = num_labels
self.mask_feature_size = mask_feature_size
# This is passed to the decoder config. We add it to the model tester here for testing
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to(
......@@ -91,11 +97,12 @@ class MaskFormerModelTester:
),
decoder_config=DetrConfig(
decoder_ffn_dim=64,
decoder_layers=2,
decoder_layers=self.num_hidden_layers,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=64,
encoder_layers=2,
encoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
num_queries=self.num_queries,
decoder_attention_heads=2,
d_model=self.mask_feature_size,
),
mask_feature_size=self.mask_feature_size,
......@@ -196,6 +203,27 @@ class MaskFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
self.model_tester = MaskFormerModelTester(self)
self.config_tester = ConfigTester(self, config_class=MaskFormerConfig, has_text_modality=False)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if model_class in [MaskFormerForInstanceSegmentation]:
inputs_dict["mask_labels"] = torch.zeros(
(
self.model_tester.batch_size,
self.model_tester.num_labels,
self.model_tester.min_size,
self.model_tester.max_size,
),
dtype=torch.float32,
device=torch_device,
)
inputs_dict["class_labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_labels), dtype=torch.long, device=torch_device
)
return inputs_dict
def test_config(self):
self.config_tester.run_common_tests()
......@@ -265,26 +293,47 @@ class MaskFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
self.model_tester.create_and_check_maskformer_model(config, **inputs, output_hidden_states=True)
def test_attention_outputs(self):
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
model = model_class(config).to(torch_device)
outputs = model(**inputs, output_attentions=True)
self.assertTrue(outputs.attentions is not None)
def test_training(self):
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
model_class = self.all_model_classes[1]
config, pixel_values, pixel_mask, mask_labels, class_labels = self.model_tester.prepare_config_and_inputs()
model = model_class(config)
model.to(torch_device)
model.train()
loss = model(pixel_values, mask_labels=mask_labels, class_labels=class_labels).loss
loss.backward()
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# Check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# encoder_hidden_states, pixel_decoder_hidden_states, transformer_decoder_hidden_states, hidden_states
added_hidden_states = 4
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
def test_retain_grad_hidden_states_attentions(self):
# only MaskFormerForInstanceSegmentation has the loss
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment