Unverified Commit 610acc5a authored by Alexander Markov's avatar Alexander Markov Committed by GitHub
Browse files

Data collator for token classification pads labels column when receives pytorch tensors (#20244)



* token cls data_collator pads labels column

* remove walrus operator for code quality

* remove redundat space

* remove comment that was fixed

* PR comments fix
Co-authored-by: default avatarAlexander Markov <amarkov.me@gmail.com>
parent d4d23141
...@@ -305,30 +305,38 @@ class DataCollatorForTokenClassification(DataCollatorMixin): ...@@ -305,30 +305,38 @@ class DataCollatorForTokenClassification(DataCollatorMixin):
label_name = "label" if "label" in features[0].keys() else "labels" label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
no_labels_features = [{k: v for k, v in feature.items() if k != label_name} for feature in features]
batch = self.tokenizer.pad( batch = self.tokenizer.pad(
features, no_labels_features,
padding=self.padding, padding=self.padding,
max_length=self.max_length, max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of, pad_to_multiple_of=self.pad_to_multiple_of,
# Conversion to tensors will fail if we have labels as they are not of the same length yet. return_tensors="pt",
return_tensors="pt" if labels is None else None,
) )
if labels is None: if labels is None:
return batch return batch
sequence_length = torch.tensor(batch["input_ids"]).shape[1] sequence_length = batch["input_ids"].shape[1]
padding_side = self.tokenizer.padding_side padding_side = self.tokenizer.padding_side
def to_list(tensor_or_iterable):
if isinstance(tensor_or_iterable, torch.Tensor):
return tensor_or_iterable.tolist()
return list(tensor_or_iterable)
if padding_side == "right": if padding_side == "right":
batch[label_name] = [ batch[label_name] = [
list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
] ]
else: else:
batch[label_name] = [ batch[label_name] = [
[self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels [self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label) for label in labels
] ]
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()} batch[label_name] = torch.tensor(batch[label_name], dtype=torch.int64)
return batch return batch
def tf_call(self, features): def tf_call(self, features):
......
...@@ -154,6 +154,51 @@ class DataCollatorIntegrationTest(unittest.TestCase): ...@@ -154,6 +154,51 @@ class DataCollatorIntegrationTest(unittest.TestCase):
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3) self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3)
for feature in features:
feature.pop("labels")
batch = data_collator(features)
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
def test_data_collator_for_token_classification_works_with_pt_tensors(self):
tokenizer = BertTokenizer(self.vocab_file)
features = [
{"input_ids": torch.tensor([0, 1, 2]), "labels": torch.tensor([0, 1, 2])},
{"input_ids": torch.tensor([0, 1, 2, 3, 4, 5]), "labels": torch.tensor([0, 1, 2, 3, 4, 5])},
]
data_collator = DataCollatorForTokenClassification(tokenizer)
batch = data_collator(features)
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3)
data_collator = DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10)
batch = data_collator(features)
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10]))
self.assertEqual(batch["labels"].shape, torch.Size([2, 10]))
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8)
batch = data_collator(features)
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8]))
self.assertEqual(batch["labels"].shape, torch.Size([2, 8]))
data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1)
batch = data_collator(features)
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3)
for feature in features:
feature.pop("labels")
batch = data_collator(features)
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
def _test_no_pad_and_pad(self, no_pad_features, pad_features): def _test_no_pad_and_pad(self, no_pad_features, pad_features):
tokenizer = BertTokenizer(self.vocab_file) tokenizer = BertTokenizer(self.vocab_file)
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment