Commit 6070b554 authored by thomwolf's avatar thomwolf
Browse files

fix #868

parent 2c9a3115
......@@ -92,6 +92,12 @@ def train(args, train_dataset, model, tokenizer):
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
......@@ -411,13 +417,8 @@ def main():
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Distributed and parallel training
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
logger.info("Training/evaluation parameters %s", args)
......
......@@ -101,6 +101,12 @@ def train(args, train_dataset, model, tokenizer):
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
......@@ -450,13 +456,8 @@ def main():
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Distributed and parrallel training
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
logger.info("Training/evaluation parameters %s", args)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment