Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
5ff0c605
Commit
5ff0c605
authored
Feb 18, 2019
by
thomwolf
Browse files
language update
parent
210d4072
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
17 additions
and
17 deletions
+17
-17
pytorch_pretrained_bert/modeling_gpt2.py
pytorch_pretrained_bert/modeling_gpt2.py
+17
-17
No files found.
pytorch_pretrained_bert/modeling_gpt2.py
View file @
5ff0c605
...
...
@@ -237,17 +237,17 @@ class Attention(nn.Module):
else
:
return
x
.
permute
(
0
,
2
,
1
,
3
)
def
forward
(
self
,
x
,
past
=
None
):
def
forward
(
self
,
x
,
layer_
past
=
None
):
x
=
self
.
c_attn
(
x
)
query
,
key
,
value
=
x
.
split
(
self
.
split_size
,
dim
=
2
)
query
=
self
.
split_heads
(
query
)
key
=
self
.
split_heads
(
key
,
k
=
True
)
value
=
self
.
split_heads
(
value
)
present
=
key
,
value
if
past
is
not
None
:
past_key
,
past_value
=
past
if
layer_past
is
not
None
:
past_key
,
past_value
=
layer_past
[
0
],
layer_past
[
1
]
key
=
torch
.
cat
((
past_key
,
key
),
dim
=-
2
)
value
=
torch
.
cat
((
past_value
,
value
),
dim
=-
2
)
present
=
torch
.
stack
((
key
,
value
))
a
=
self
.
_attn
(
query
,
key
,
value
)
a
=
self
.
merge_heads
(
a
)
a
=
self
.
c_proj
(
a
)
...
...
@@ -277,8 +277,8 @@ class Block(nn.Module):
self
.
ln_2
=
LayerNorm
(
nx
,
eps
=
config
.
layer_norm_epsilon
)
self
.
mlp
=
MLP
(
4
*
nx
,
config
)
def
forward
(
self
,
x
,
past
=
None
):
a
,
present
=
self
.
attn
(
self
.
ln_1
(
x
),
past
=
past
)
def
forward
(
self
,
x
,
layer_
past
=
None
):
a
,
present
=
self
.
attn
(
self
.
ln_1
(
x
),
layer_
past
=
past
)
x
=
x
+
a
m
=
self
.
mlp
(
self
.
ln_2
(
x
))
x
=
x
+
m
...
...
@@ -346,7 +346,7 @@ class GPT2PreTrainedModel(nn.Module):
)
self
.
config
=
config
def
set_tied
():
def
set_tied
(
self
):
pass
def
init_weights
(
self
,
module
):
...
...
@@ -526,12 +526,12 @@ class GPT2Model(GPT2PreTrainedModel):
self
.
apply
(
self
.
init_weights
)
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
past
s
=
None
):
if
past
s
is
None
:
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
past
=
None
):
if
past
is
None
:
past_length
=
0
past
s
=
[
None
]
*
len
(
self
.
h
)
past
=
[
None
]
*
len
(
self
.
h
)
else
:
past
s
[
0
][
0
].
size
(
-
2
)
past
[
0
][
0
].
size
(
-
2
)
if
position_ids
is
None
:
position_ids
=
torch
.
arange
(
past_length
,
input_ids
.
size
(
-
1
)
+
past_length
,
dtype
=
torch
.
long
,
device
=
input_ids
.
device
)
position_ids
=
position_ids
.
unsqueeze
(
0
).
expand_as
(
input_ids
)
...
...
@@ -549,8 +549,8 @@ class GPT2Model(GPT2PreTrainedModel):
token_type_embeds
=
0
hidden_states
=
inputs_embeds
+
position_embeds
+
token_type_embeds
presents
=
[]
for
block
,
past
in
zip
(
self
.
h
,
past
s
):
hidden_states
,
present
=
block
(
hidden_states
,
past
)
for
block
,
layer_
past
in
zip
(
self
.
h
,
past
):
hidden_states
,
present
=
block
(
hidden_states
,
layer_
past
)
presents
.
append
(
present
)
hidden_states
=
self
.
ln_f
(
hidden_states
)
output_shape
=
input_shape
+
(
hidden_states
.
size
(
-
1
),)
...
...
@@ -607,8 +607,8 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
"""
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
wte
.
weight
)
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
lm_labels
=
None
,
past
s
=
None
):
hidden_states
,
presents
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
,
past
s
)
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
lm_labels
=
None
,
past
=
None
):
hidden_states
,
presents
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
,
past
)
lm_logits
=
self
.
lm_head
(
hidden_states
)
if
lm_labels
is
not
None
:
loss_fct
=
CrossEntropyLoss
(
ignore_index
=-
1
)
...
...
@@ -673,8 +673,8 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
"""
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
wte
.
weight
)
def
forward
(
self
,
input_ids
,
mc_token_ids
,
lm_labels
=
None
,
mc_labels
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
past
s
=
None
):
hidden_states
,
presents
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
,
past
s
)
def
forward
(
self
,
input_ids
,
mc_token_ids
,
lm_labels
=
None
,
mc_labels
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
past
=
None
):
hidden_states
,
presents
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
,
past
)
lm_logits
=
self
.
lm_head
(
hidden_states
)
mc_logits
=
self
.
multiple_choice_head
(
hidden_states
,
mc_token_ids
)
losses
=
[]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment