".circleci/git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "fa37d9bbe85f8a3e03d15211f1448f010a62a8ea"
Unverified Commit 5ced23dc authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[Pegasus] Refactor Tokenizer (#8731)

* refactor

* further refactor

* fix the rest tomorrow

* save intermediate

* finish slow tokenizer

* make more tests pass

* finish refactor

* fix comment

* clean further

* fix name

* fix naming

* Update src/transformers/models/reformer/tokenization_reformer.py

* Apply suggestions from code review

* Apply suggestions from code review

* refactor

* fix init tokenizers

* refactor

* improve convert

* refactor

* correct convert slow tokenizer

* final fix for Pegasus Tok

* remove ipdb

* improve links
parent 36b60ce9
...@@ -547,10 +547,12 @@ class BertGenerationConverter(SpmConverter): ...@@ -547,10 +547,12 @@ class BertGenerationConverter(SpmConverter):
class PegasusConverter(SpmConverter): class PegasusConverter(SpmConverter):
def vocab(self, proto): def vocab(self, proto):
vocab = [ vocab = [
(self.original_tokenizer.pad_token, 0), (self.original_tokenizer.pad_token, 0.0),
(self.original_tokenizer.eos_token, 0), (self.original_tokenizer.eos_token, 0.0),
(self.original_tokenizer.mask_token_sent, 0.0),
(self.original_tokenizer.mask_token, 0.0),
] ]
vocab += [(f"unk_{i}", -100) for i in range(2, 2 + self.original_tokenizer.offset)] vocab += [(f"<unk_{i}>", -100.0) for i in range(2, self.original_tokenizer.offset)]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]] vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]]
return vocab return vocab
...@@ -559,13 +561,10 @@ class PegasusConverter(SpmConverter): ...@@ -559,13 +561,10 @@ class PegasusConverter(SpmConverter):
def post_processor(self): def post_processor(self):
eos = self.original_tokenizer.eos_token eos = self.original_tokenizer.eos_token
return processors.TemplateProcessing( special_tokens = [
single=["$A", eos], (eos, self.original_tokenizer.eos_token_id),
pair=["$A", "$B", eos], ]
special_tokens=[ return processors.TemplateProcessing(single=["$A", eos], pair=["$A", "$B", eos], special_tokens=special_tokens)
(eos, self.original_tokenizer.eos_token_id),
],
)
class T5Converter(SpmConverter): class T5Converter(SpmConverter):
......
...@@ -71,10 +71,10 @@ SPIECE_UNDERLINE = "▁" ...@@ -71,10 +71,10 @@ SPIECE_UNDERLINE = "▁"
class AlbertTokenizerFast(PreTrainedTokenizerFast): class AlbertTokenizerFast(PreTrainedTokenizerFast):
""" """
Construct a "fast" ALBERT tokenizer (backed by HuggingFace's `tokenizers` library). Based on `SentencePiece Construct a "fast" ALBERT tokenizer (backed by HuggingFace's `tokenizers` library). Based on `Unigram
<https://github.com/google/sentencepiece>`__. This tokenizer inherits from <https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models>`__. This tokenizer
:class:`~transformers.PreTrainedTokenizerFast` which contains most of the main methods. Users should refer to this inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main methods. Users should
superclass for more information regarding those methods refer to this superclass for more information regarding those methods
Args: Args:
vocab_file (:obj:`str`): vocab_file (:obj:`str`):
......
...@@ -60,8 +60,8 @@ SPIECE_UNDERLINE = "▁" ...@@ -60,8 +60,8 @@ SPIECE_UNDERLINE = "▁"
class CamembertTokenizerFast(PreTrainedTokenizerFast): class CamembertTokenizerFast(PreTrainedTokenizerFast):
""" """
Construct a "fast" CamemBERT tokenizer (backed by HuggingFace's `tokenizers` library). Adapted from Construct a "fast" CamemBERT tokenizer (backed by HuggingFace's `tokenizers` library). Adapted from
:class:`~transformers.RobertaTokenizer` and :class:`~transformers.XLNetTokenizer`. Based on `SentencePiece :class:`~transformers.RobertaTokenizer` and :class:`~transformers.XLNetTokenizer`. Based on `BPE
<https://github.com/google/sentencepiece>`__. <https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models>`__.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main
methods. Users should refer to this superclass for more information regarding those methods. methods. Users should refer to this superclass for more information regarding those methods.
......
...@@ -67,7 +67,8 @@ FAIRSEQ_LANGUAGE_CODES = [ ...@@ -67,7 +67,8 @@ FAIRSEQ_LANGUAGE_CODES = [
class MBartTokenizerFast(XLMRobertaTokenizerFast): class MBartTokenizerFast(XLMRobertaTokenizerFast):
""" """
Construct a "fast" MBART tokenizer (backed by HuggingFace's `tokenizers` library). Construct a "fast" MBART tokenizer (backed by HuggingFace's `tokenizers` library). Based on `BPE
<https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models>`__.
:class:`~transformers.MBartTokenizerFast` is a subclass of :class:`~transformers.XLMRobertaTokenizerFast` and adds :class:`~transformers.MBartTokenizerFast` is a subclass of :class:`~transformers.XLMRobertaTokenizerFast` and adds
a new :meth:`~transformers.MBartTokenizerFast.prepare_seq2seq_batch`. a new :meth:`~transformers.MBartTokenizerFast.prepare_seq2seq_batch`.
......
...@@ -12,11 +12,16 @@ ...@@ -12,11 +12,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from typing import Dict, List, Optional import os
from shutil import copyfile
from typing import Dict, List, Optional, Tuple
import sentencepiece as spm
from ...file_utils import add_start_docstrings from ...file_utils import add_start_docstrings
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING, BatchEncoding from ...tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING, BatchEncoding
from ..reformer.tokenization_reformer import ReformerTokenizer from ...utils import logging
SPIECE_UNDERLINE = "▁" SPIECE_UNDERLINE = "▁"
...@@ -32,31 +37,145 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { ...@@ -32,31 +37,145 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
} }
class PegasusTokenizer(ReformerTokenizer): logger = logging.get_logger(__name__)
class PegasusTokenizer(PreTrainedTokenizer):
r""" r"""
Construct a Pegasus tokenizer. Construct a PEGASUS tokenizer. Based on `SentencePiece <https://github.com/google/sentencepiece>`__.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
:class:`~transformers.PegasusTokenizer` is identical to :class:`~transformers.ReformerTokenizer` and adds a new Args:
:meth:`~transformers.PegasusTokenizer.prepare_seq2seq_batch` vocab_file (:obj:`str`):
`SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that
contains the vocabulary necessary to instantiate a tokenizer.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`):
The end of sequence token.
Refer to superclass :class:`~transformers.ReformerTokenizer` for usage examples and documentation concerning the .. note::
initialization parameters and other methods.
When building a sequence using special tokens, this is not the token that is used for the end of
sequence. The token used is the :obj:`sep_token`.
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask_2>"`):
The token used for masking single token values. This is the token used when training this model with masked
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
It corresponds to `[MASK2]` in `PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
Summarization <https://arxiv.org/pdf/1912.08777.pdf>`__.
mask_token_sent (:obj:`str`, `optional`, defaults to :obj:`"<mask_1>"`):
The token used for masking whole target sentences. This is the token used when training this model with gap
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
pretraining. It corresponds to `[MASK1]` in `PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization <https://arxiv.org/pdf/1912.08777.pdf>`__.
additional_special_tokens (:obj:`List[str]`, `optional`):
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the `original PEGASUS
tokenizer
<https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66>`__
that uses the tokens 2 - 104 only for pretraining
""" """
offset = 103 # entries 2-104 are only used for pretraining vocab_files_names = VOCAB_FILES_NAMES
offset = 103 # entries 2 - 104 are only used for pretraining
vocab_files_names = VOCAB_FILES_NAMES vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["attention_mask"]
def __init__(
self,
vocab_file,
pad_token="<pad>",
eos_token="</s>",
unk_token="<unk>",
mask_token="<mask_2>",
mask_token_sent="<mask_1>",
additional_special_tokens=None,
**kwargs
):
if additional_special_tokens is not None:
assert isinstance(
additional_special_tokens, list
), f"additional_special_tokens should be of type {type(list)}, but is {type(additional_special_tokens)}"
additional_special_tokens_extended = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1)
]
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
raise ValueError(
f"Please make sure that the provided additional_special_tokens do not contain an incorrectly shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}."
)
additional_special_tokens = additional_special_tokens_extended
else:
additional_special_tokens = [mask_token_sent]
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)]
def __init__(self, *args, pad_token="<pad>", **kwargs): super().__init__(
super().__init__(*args, **kwargs, pad_token="<pad>") eos_token=eos_token,
# Don't use reserved words added_token_encoder, added_tokens_decoder because of unk_token=unk_token,
# AssertionError: Non-consecutive added token '1' found. in from_pretrained mask_token=mask_token,
assert len(self.added_tokens_decoder) == 0 pad_token=pad_token,
self.encoder: Dict[int, str] = {0: self.pad_token, 1: self.eos_token} mask_token_sent=mask_token_sent,
# entries 2-104 are only used for pretraining and called unk_2, ...unk_104 additional_special_tokens=additional_special_tokens,
self.encoder.update({i: f"unk_{i}" for i in range(2, self.offset + 2)}) **kwargs,
)
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(vocab_file)
self.mask_token_sent = mask_token_sent
# add special tokens to encoder dict
self.encoder: Dict[int, str] = {
0: self.pad_token,
1: self.eos_token,
2: self.mask_token_sent,
3: self.mask_token,
}
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1)})
self.decoder: Dict[str, int] = {v: k for k, v in self.encoder.items()} self.decoder: Dict[str, int] = {v: k for k, v in self.encoder.items()}
@property
def vocab_size(self) -> int:
return len(self.sp_model) + self.offset
def get_vocab(self) -> Dict[str, int]:
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text, sample=False):
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
if not sample:
pieces = self.sp_model.EncodeAsPieces(text)
else:
pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
return pieces
def _convert_token_to_id(self, token: str) -> int: def _convert_token_to_id(self, token: str) -> int:
""" Converts a token (str) to an id using the vocab. """ """ Converts a token (str) to an id using the vocab. """
if token in self.decoder: if token in self.decoder:
...@@ -73,13 +192,13 @@ class PegasusTokenizer(ReformerTokenizer): ...@@ -73,13 +192,13 @@ class PegasusTokenizer(ReformerTokenizer):
elif index in self.added_tokens_encoder: elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index] return self.added_tokens_encoder[index]
else: else:
# assert index > self.offset, f"cannot decode ids between 2 and {self.offset}. Got {index}"
token = self.sp_model.IdToPiece(index - self.offset) token = self.sp_model.IdToPiece(index - self.offset)
return token return token
@property def convert_tokens_to_string(self, tokens):
def vocab_size(self) -> int: """ Converts a sequence of tokens (string) in a single string. """
return len(self.sp_model) + self.offset out_string = self.sp_model.decode_pieces(tokens)
return out_string
def num_special_tokens_to_add(self, pair=False): def num_special_tokens_to_add(self, pair=False):
"""Just EOS""" """Just EOS"""
...@@ -88,7 +207,11 @@ class PegasusTokenizer(ReformerTokenizer): ...@@ -88,7 +207,11 @@ class PegasusTokenizer(ReformerTokenizer):
def _special_token_mask(self, seq): def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
assert all_special_ids == set([0, 1])
assert all_special_ids == set(
range(len(self.additional_special_tokens) + 3)
), f"There should be 3 special tokens: mask_token, pad_token, and eos_token + {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}"
return [1 if x in all_special_ids else 0 for x in seq] return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask( def get_special_tokens_mask(
...@@ -105,7 +228,7 @@ class PegasusTokenizer(ReformerTokenizer): ...@@ -105,7 +228,7 @@ class PegasusTokenizer(ReformerTokenizer):
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
""" """
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating
and adding special tokens. A Pegasus sequence has the following format, where ``X`` represents the sequence: and adding special tokens. A PEGASUS sequence has the following format, where ``X`` represents the sequence:
- single sequence: ``X </s>`` - single sequence: ``X </s>``
- pair of sequences: ``A B </s>`` (not intended use) - pair of sequences: ``A B </s>`` (not intended use)
...@@ -156,3 +279,16 @@ class PegasusTokenizer(ReformerTokenizer): ...@@ -156,3 +279,16 @@ class PegasusTokenizer(ReformerTokenizer):
labels: BatchEncoding = self(tgt_texts, **tokenizer_kwargs)["input_ids"] labels: BatchEncoding = self(tgt_texts, **tokenizer_kwargs)["input_ids"]
model_inputs["labels"] = labels model_inputs["labels"] = labels
return model_inputs return model_inputs
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
...@@ -12,11 +12,17 @@ ...@@ -12,11 +12,17 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from typing import List, Optional """ Tokenization class for model PEGASUS."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...file_utils import add_start_docstrings, is_sentencepiece_available from ...file_utils import add_start_docstrings, is_sentencepiece_available
from ...tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING, BatchEncoding from ...tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING, BatchEncoding
from ..reformer.tokenization_reformer_fast import ReformerTokenizerFast from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if is_sentencepiece_available(): if is_sentencepiece_available():
...@@ -25,6 +31,9 @@ else: ...@@ -25,6 +31,9 @@ else:
PegasusTokenizer = None PegasusTokenizer = None
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁" SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
...@@ -39,21 +48,112 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { ...@@ -39,21 +48,112 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
} }
class PegasusTokenizerFast(ReformerTokenizerFast): class PegasusTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" PEGASUS tokenizer (backed by HuggingFace's `tokenizers` library). Based on `Unigram
<https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models>`__.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
Args:
vocab_file (:obj:`str`):
`SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that
contains the vocabulary necessary to instantiate a tokenizer.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`):
The end of sequence token.
.. note::
When building a sequence using special tokens, this is not the token that is used for the end of
sequence. The token used is the :obj:`sep_token`.
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask_2>"`):
The token used for masking single token values. This is the token used when training this model with masked
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
It corresponds to `[MASK2]` in `PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
Summarization <https://arxiv.org/pdf/1912.08777.pdf>`__.
mask_token_sent (:obj:`str`, `optional`, defaults to :obj:`"<mask_1>"`):
The token used for masking whole target sentences. This is the token used when training this model with gap
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
pretraining. It corresponds to `[MASK1]` in `PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization <https://arxiv.org/pdf/1912.08777.pdf>`__.
additional_special_tokens (:obj:`List[str]`, `optional`):
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the `original PEGASUS
tokenizer
<https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66>`__
that uses the tokens 2 - 104 only for pretraining
"""
offset = 103 # entries 2-104 are only used for pretraining offset = 103 # entries 2-104 are only used for pretraining
vocab_files_names = VOCAB_FILES_NAMES vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = PegasusTokenizer slow_tokenizer_class = PegasusTokenizer
model_input_names = ["attention_mask"]
def __init__(
self,
vocab_file,
tokenizer_file=None,
pad_token="<pad>",
eos_token="</s>",
unk_token="<unk>",
mask_token="<mask_2>",
mask_token_sent="<mask_1>",
additional_special_tokens=None,
**kwargs
):
if additional_special_tokens is not None:
assert isinstance(
additional_special_tokens, list
), f"additional_special_tokens should be of type {type(list)}, but is {type(additional_special_tokens)}"
additional_special_tokens_extended = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1)
]
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
raise ValueError(
f"Please make sure that the provided additional_special_tokens do not contain an incorrectly shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}."
)
additional_special_tokens = additional_special_tokens_extended
else:
additional_special_tokens = [mask_token_sent]
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)]
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
pad_token=pad_token,
eos_token=eos_token,
unk_token=unk_token,
mask_token=mask_token,
mask_token_sent=mask_token_sent,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
# def num_special_tokens_to_add(self, pair=False): self.vocab_file = vocab_file
# """Just EOS"""
# return 1
def _special_token_mask(self, seq): def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
assert all_special_ids == set([0, 1])
assert all_special_ids == set(
range(len(self.additional_special_tokens) + 3)
), f"There should be 3 special tokens: mask_token, pad_token, and eos_token + {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}"
return [1 if x in all_special_ids else 0 for x in seq] return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask( def get_special_tokens_mask(
...@@ -117,3 +217,16 @@ class PegasusTokenizerFast(ReformerTokenizerFast): ...@@ -117,3 +217,16 @@ class PegasusTokenizerFast(ReformerTokenizerFast):
labels: BatchEncoding = self(tgt_texts, **tokenizer_kwargs)["input_ids"] labels: BatchEncoding = self(tgt_texts, **tokenizer_kwargs)["input_ids"]
model_inputs["labels"] = labels model_inputs["labels"] = labels
return model_inputs return model_inputs
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
...@@ -64,8 +64,8 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { ...@@ -64,8 +64,8 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
class ReformerTokenizerFast(PreTrainedTokenizerFast): class ReformerTokenizerFast(PreTrainedTokenizerFast):
""" """
Construct a "fast" Reformer tokenizer (backed by HuggingFace's `tokenizers` library). Based on `SentencePiece Construct a "fast" Reformer tokenizer (backed by HuggingFace's `tokenizers` library). Based on `Unigram
<https://github.com/google/sentencepiece>`__ . <https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models>`__.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main
methods. Users should refer to this superclass for more information regarding those methods. methods. Users should refer to this superclass for more information regarding those methods.
......
...@@ -75,8 +75,8 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { ...@@ -75,8 +75,8 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
class T5TokenizerFast(PreTrainedTokenizerFast): class T5TokenizerFast(PreTrainedTokenizerFast):
""" """
Construct a "fast" T5 tokenizer (backed by HuggingFace's `tokenizers` library). Based on `SentencePiece Construct a "fast" T5 tokenizer (backed by HuggingFace's `tokenizers` library). Based on `Unigram
<https://github.com/google/sentencepiece>`__ . <https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models>`__.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main
methods. Users should refer to this superclass for more information regarding those methods. methods. Users should refer to this superclass for more information regarding those methods.
......
...@@ -66,8 +66,8 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { ...@@ -66,8 +66,8 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
class XLMRobertaTokenizerFast(PreTrainedTokenizerFast): class XLMRobertaTokenizerFast(PreTrainedTokenizerFast):
""" """
Construct a "fast" XLM-RoBERTa tokenizer (backed by HuggingFace's `tokenizers` library). Adapted from Construct a "fast" XLM-RoBERTa tokenizer (backed by HuggingFace's `tokenizers` library). Adapted from
:class:`~transfomers.RobertaTokenizer` and class:`~transfomers.XLNetTokenizer`. Based on `SentencePiece :class:`~transfomers.RobertaTokenizer` and class:`~transfomers.XLNetTokenizer`. Based on `BPE
<https://github.com/google/sentencepiece>`__. <https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models>`__.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main
methods. Users should refer to this superclass for more information regarding those methods. methods. Users should refer to this superclass for more information regarding those methods.
......
...@@ -62,8 +62,8 @@ SEG_ID_PAD = 4 ...@@ -62,8 +62,8 @@ SEG_ID_PAD = 4
class XLNetTokenizerFast(PreTrainedTokenizerFast): class XLNetTokenizerFast(PreTrainedTokenizerFast):
""" """
Construct a "fast" XLNet tokenizer (backed by HuggingFace's `tokenizers` library). Based on `SentencePiece Construct a "fast" XLNet tokenizer (backed by HuggingFace's `tokenizers` library). Based on `Unigram
<https://github.com/google/sentencepiece>`__. <https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models>`__.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main
methods. Users should refer to this superclass for more information regarding those methods. methods. Users should refer to this superclass for more information regarding those methods.
......
...@@ -26,21 +26,34 @@ class PegasusTokenizationTest(TokenizerTesterMixin, unittest.TestCase): ...@@ -26,21 +26,34 @@ class PegasusTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname)
@cached_property @cached_property
def pegasus_large_tokenizer(self): def _large_tokenizer(self):
return PegasusTokenizer.from_pretrained("google/pegasus-large") return PegasusTokenizer.from_pretrained("google/pegasus-large")
@unittest.skip("add_tokens does not work yet")
def test_swap_special_token(self):
pass
def get_tokenizer(self, **kwargs) -> PegasusTokenizer: def get_tokenizer(self, **kwargs) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname, **kwargs) return PegasusTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer): def get_input_output_texts(self, tokenizer):
return ("This is a test", "This is a test") return ("This is a test", "This is a test")
def test_pegasus_large_tokenizer_settings(self): def test_mask_tokens_rust_pegasus(self):
tokenizer = self.pegasus_large_tokenizer rust_tokenizer = self.rust_tokenizer_class.from_pretrained(self.tmpdirname)
py_tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname)
raw_input_str = "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important </s> <pad> <pad> <pad>"
rust_ids = rust_tokenizer([raw_input_str], return_tensors=None, add_special_tokens=False).input_ids[0]
py_ids = py_tokenizer([raw_input_str], return_tensors=None, add_special_tokens=False).input_ids[0]
# TODO: (Thom, Patrick) - this fails because the rust tokenizer does not know about the <mask_1>, <mask_2>, and those <unk_token_x> yet
self.assertListEqual(py_ids, rust_ids)
def test_large_mask_tokens(self):
tokenizer = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
raw_input_str = "<mask_1> To ensure a <mask_2> flow of bank resolutions."
desired_result = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
ids = tokenizer([raw_input_str], return_tensors=None).input_ids[0]
self.assertListEqual(desired_result, ids)
def test_large_tokenizer_settings(self):
tokenizer = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual # The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103 assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0 assert tokenizer.pad_token_id == 0
...@@ -48,20 +61,18 @@ class PegasusTokenizationTest(TokenizerTesterMixin, unittest.TestCase): ...@@ -48,20 +61,18 @@ class PegasusTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
assert tokenizer.offset == 103 assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>" assert tokenizer.unk_token == "<unk>"
assert tokenizer.mask_token is None
assert tokenizer.mask_token_id is None
assert tokenizer.model_max_length == 1024 assert tokenizer.model_max_length == 1024
raw_input_str = "To ensure a smooth flow of bank resolutions." raw_input_str = "To ensure a smooth flow of bank resolutions."
desired_result = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] desired_result = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
ids = tokenizer([raw_input_str], return_tensors=None).input_ids[0] ids = tokenizer([raw_input_str], return_tensors=None).input_ids[0]
self.assertListEqual(desired_result, ids) self.assertListEqual(desired_result, ids)
assert tokenizer.convert_ids_to_tokens([0, 1, 2]) == ["<pad>", "</s>", "unk_2"] assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch @require_torch
def test_pegasus_large_seq2seq_truncation(self): def test_large_seq2seq_truncation(self):
src_texts = ["This is going to be way too long." * 150, "short example"] src_texts = ["This is going to be way too long." * 150, "short example"]
tgt_texts = ["not super long but more than 5 tokens", "tiny"] tgt_texts = ["not super long but more than 5 tokens", "tiny"]
batch = self.pegasus_large_tokenizer.prepare_seq2seq_batch( batch = self._large_tokenizer.prepare_seq2seq_batch(
src_texts, tgt_texts=tgt_texts, max_target_length=5, return_tensors="pt" src_texts, tgt_texts=tgt_texts, max_target_length=5, return_tensors="pt"
) )
assert batch.input_ids.shape == (2, 1024) assert batch.input_ids.shape == (2, 1024)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment