Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
5ab87cd4
"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "5929f86ebba157b3ea3460622215a2b9db69d44b"
Unverified
Commit
5ab87cd4
authored
Jan 06, 2022
by
Matt Churgin
Committed by
GitHub
Jan 06, 2022
Browse files
wrapped forward passes in torch.no_grad() (#15037)
parent
5a06118b
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
3 deletions
+6
-3
tests/test_modeling_roberta.py
tests/test_modeling_roberta.py
+6
-3
No files found.
tests/test_modeling_roberta.py
View file @
5ab87cd4
...
...
@@ -485,7 +485,8 @@ class RobertaModelIntegrationTest(TestCasePlus):
model
=
RobertaForMaskedLM
.
from_pretrained
(
"roberta-base"
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
with
torch
.
no_grad
():
output
=
model
(
input_ids
)[
0
]
expected_shape
=
torch
.
Size
((
1
,
11
,
50265
))
self
.
assertEqual
(
output
.
shape
,
expected_shape
)
# compare the actual values for a slice.
...
...
@@ -504,7 +505,8 @@ class RobertaModelIntegrationTest(TestCasePlus):
model
=
RobertaModel
.
from_pretrained
(
"roberta-base"
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
with
torch
.
no_grad
():
output
=
model
(
input_ids
)[
0
]
# compare the actual values for a slice.
expected_slice
=
torch
.
tensor
(
[[[
-
0.0231
,
0.0782
,
0.0074
],
[
-
0.1854
,
0.0540
,
-
0.0175
],
[
0.0548
,
0.0799
,
0.1687
]]]
...
...
@@ -521,7 +523,8 @@ class RobertaModelIntegrationTest(TestCasePlus):
model
=
RobertaForSequenceClassification
.
from_pretrained
(
"roberta-large-mnli"
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
with
torch
.
no_grad
():
output
=
model
(
input_ids
)[
0
]
expected_shape
=
torch
.
Size
((
1
,
3
))
self
.
assertEqual
(
output
.
shape
,
expected_shape
)
expected_tensor
=
torch
.
tensor
([[
-
0.9469
,
0.3913
,
0.5118
]])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment