Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
5a71977b
"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "707105290b0825c8fd01c977d33ec8f8833c937f"
Unverified
Commit
5a71977b
authored
Apr 12, 2023
by
amyeroberts
Committed by
GitHub
Apr 12, 2023
Browse files
Update input values for docstring (#22631)
parent
fe1f5a63
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
3 deletions
+6
-3
src/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py
...ram_transformer/modeling_audio_spectrogram_transformer.py
+6
-3
No files found.
src/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py
View file @
5a71977b
...
@@ -414,9 +414,12 @@ AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING = r"""
...
@@ -414,9 +414,12 @@ AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING = r"""
AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING
=
r
"""
AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING
=
r
"""
Args:
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
input_values (`torch.FloatTensor` of shape `(batch_size, max_length, num_mel_bins)`):
Pixel values. Pixel values can be obtained using [`AutoFeatureExtractor`]. See
Float values mel features extracted from the raw audio waveform. Raw audio waveform can be obtained by
[`ASTFeatureExtractor.__call__`] for details.
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
tensor of type `torch.FloatTensor`. See [`~ASTFeatureExtractor.__call__`]
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment