Unverified Commit 57420b10 authored by Alex Hedges's avatar Alex Hedges Committed by GitHub
Browse files

Add missing whitespace to multiline strings (#13916)

parent 319beb64
......@@ -189,12 +189,12 @@ class Speech2TextFeatureExtractor(SequenceFeatureExtractor):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of {self.sampling_rate}."
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of {self.sampling_rate}. "
f"Please make sure that the provided `raw_speech` input was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function."
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
......
......@@ -300,7 +300,7 @@ class SqueezeBertEncoder(nn.Module):
super().__init__()
assert config.embedding_size == config.hidden_size, (
"If you want embedding_size != intermediate hidden_size,"
"If you want embedding_size != intermediate hidden_size, "
"please insert a Conv1d layer to adjust the number of channels "
"before the first SqueezeBertModule."
)
......
......@@ -54,8 +54,8 @@ if is_scatter_available():
from torch_scatter import scatter
except OSError:
logger.error(
"TAPAS models are not usable since `torch_scatter` can't be loaded."
"It seems you have `torch_scatter` installed with the wrong CUDA version."
"TAPAS models are not usable since `torch_scatter` can't be loaded. "
"It seems you have `torch_scatter` installed with the wrong CUDA version. "
"Please try to reinstall it following the instructions here: https://github.com/rusty1s/pytorch_scatter."
)
......
......@@ -712,7 +712,7 @@ class TapasTokenizer(PreTrainedTokenizer):
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
......@@ -981,7 +981,7 @@ class TapasTokenizer(PreTrainedTokenizer):
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
......@@ -1159,7 +1159,7 @@ class TapasTokenizer(PreTrainedTokenizer):
if max_length is not None and len(input_ids) > max_length:
raise ValueError(
"Could not encode the query and table header given the maximum length. Encoding the query and table"
"Could not encode the query and table header given the maximum length. Encoding the query and table "
f"header results in a length of {len(input_ids)} which is higher than the max_length of {max_length}"
)
......
......@@ -236,7 +236,7 @@ class TransfoXLTokenizer(PreTrainedTokenizer):
except Exception as e:
raise ValueError(
f"Unable to parse file {pretrained_vocab_file}. Unknown format. "
"If you tried to load a model saved through TransfoXLTokenizerFast,"
"If you tried to load a model saved through TransfoXLTokenizerFast, "
"please note they are not compatible."
) from e
......
......@@ -174,7 +174,7 @@ class VisualBertEmbeddings(nn.Module):
if visual_position_embeddings.size(1) != visual_embeds.size(1):
if visual_position_embeddings.size(1) < visual_embeds.size(1):
raise ValueError(
f"Visual position embeddings length: {visual_position_embeddings.size(1)}"
f"Visual position embeddings length: {visual_position_embeddings.size(1)} "
f"should be the same as `visual_embeds` length: {visual_embeds.size(1)}"
)
visual_position_embeddings = visual_position_embeddings[:, : visual_embeds.size(1), :]
......@@ -973,7 +973,7 @@ class VisualBertForPreTraining(VisualBertPreTrainedModel):
total_size = attention_mask.size(-1) + visual_attention_mask.size(-1)
if labels.size(-1) != total_size:
raise ValueError(
f"The labels provided should have same sequence length as total attention mask."
f"The labels provided should have same sequence length as total attention mask. "
f"Found labels with sequence length {labels.size(-1)}, expected {total_size}."
)
......@@ -986,7 +986,7 @@ class VisualBertForPreTraining(VisualBertPreTrainedModel):
total_size = attention_mask.size(-1) + visual_attention_mask.size(-1)
if labels.size(-1) != total_size:
raise ValueError(
f"The labels provided should have same sequence length as total attention mask."
f"The labels provided should have same sequence length as total attention mask. "
f"Found labels with sequence length {labels.size(-1)}, expected {total_size}."
)
......
......@@ -122,7 +122,7 @@ class ViTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),"
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example), "
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
......
......@@ -237,9 +237,9 @@ class Wav2Vec2Config(PretrainedConfig):
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)"
"Configuration for convolutional layers is incorrect. "
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, "
f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) "
f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
......
......@@ -170,12 +170,12 @@ class Wav2Vec2FeatureExtractor(SequenceFeatureExtractor):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of {self.sampling_rate}."
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of {self.sampling_rate}. "
f"Please make sure that the provided `raw_speech` input was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function."
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
......
......@@ -1421,7 +1421,7 @@ class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`."
"instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
......
......@@ -152,7 +152,7 @@ class XLMProphetNetTokenizer(PreTrainedTokenizer):
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece "
"pip install sentencepiece"
)
raise
......@@ -191,7 +191,7 @@ class XLMProphetNetTokenizer(PreTrainedTokenizer):
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece "
"pip install sentencepiece"
)
raise
......
......@@ -109,7 +109,7 @@ class FeaturesManager:
task = FeaturesManager.feature_to_task(feature)
if task not in FeaturesManager._TASKS_TO_AUTOMODELS:
raise KeyError(
f"Unknown task: {feature}."
f"Unknown task: {feature}. "
f"Possible values are {list(FeaturesManager._TASKS_TO_AUTOMODELS.values())}"
)
......
......@@ -596,9 +596,9 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase):
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
......@@ -673,7 +673,7 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase):
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
......
......@@ -3059,7 +3059,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin, PushToHubMixin):
pair_ids = pair_ids[:-num_tokens_to_remove]
else:
logger.error(
f"We need to remove {num_tokens_to_remove} to truncate the input"
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the second sequence has a length {len(pair_ids)}. "
f"Please select another truncation strategy than {truncation_strategy}, "
f"for instance 'longest_first' or 'only_first'."
......@@ -3250,7 +3250,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin, PushToHubMixin):
"""
assert already_has_special_tokens and token_ids_1 is None, (
"You cannot use ``already_has_special_tokens=False`` with this tokenizer. "
"Please use a slow (full python) tokenizer to activate this argument."
"Please use a slow (full python) tokenizer to activate this argument. "
"Or set `return_special_tokens_mask=True` when calling the encoding method "
"to get the special tokens mask in any tokenizer. "
)
......
......@@ -385,7 +385,7 @@ class Trainer:
self.optimizer, self.lr_scheduler = optimizers
if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
raise RuntimeError(
"Passing a `model_init` is incompatible with providing the `optimizers` argument."
"Passing a `model_init` is incompatible with providing the `optimizers` argument. "
"You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
)
default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
......@@ -1737,8 +1737,8 @@ class Trainer:
if backend is None:
raise RuntimeError(
"At least one of optuna or ray should be installed. "
"To install optuna run `pip install optuna`."
"To install ray run `pip install ray[tune]`."
"To install optuna run `pip install optuna`. "
"To install ray run `pip install ray[tune]`. "
"To install sigopt run `pip install sigopt`."
)
backend = HPSearchBackend(backend)
......
......@@ -385,7 +385,7 @@ class TrainingArguments:
default=False,
metadata={
"help": (
"Overwrite the content of the output directory."
"Overwrite the content of the output directory. "
"Use this to continue training if output_dir points to a checkpoint directory."
)
},
......@@ -420,7 +420,7 @@ class TrainingArguments:
per_gpu_eval_batch_size: Optional[int] = field(
default=None,
metadata={
"help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred."
"help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred. "
"Batch size per GPU/TPU core/CPU for evaluation."
},
)
......@@ -492,7 +492,7 @@ class TrainingArguments:
default=None,
metadata={
"help": (
"Limit the total amount of checkpoints."
"Limit the total amount of checkpoints. "
"Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints"
)
},
......@@ -514,7 +514,7 @@ class TrainingArguments:
default="O1",
metadata={
"help": (
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
"See details at https://nvidia.github.io/apex/amp.html"
)
},
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment