Unverified Commit 51e980ce authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge pull request #1155 from anhnt170489/apex_fp16

Update apex fp16 implementation
parents 206c35e9 2fb9a934
......@@ -235,8 +235,9 @@ def main():
# Prepare model
model = BertForPreTraining.from_pretrained(args.bert_model)
if args.fp16:
model.half()
# We don't need to manually call model.half() following Apex's recommend
# if args.fp16:
# model.half()
model.to(device)
if args.local_rank != -1:
try:
......@@ -257,25 +258,36 @@ def main():
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps,
t_total=num_train_optimization_steps)
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
# from apex.optimizers import FP16_Optimizer
# from apex.optimizers import FusedAdam
from apex import amp
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps)
# This below line of code is the main upgrade of Apex Fp16 implementation. I chose opt_leve="01"
# because it's recommended for typical use by Apex. We can make it configured
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
# We don't need to use FP16_Optimizer wrapping over FusedAdam as well. Now Apex supports all Pytorch Optimizer
# optimizer = FusedAdam(optimizer_grouped_parameters,
# lr=args.learning_rate,
# bias_correction=False,
# max_grad_norm=1.0)
# if args.loss_scale == 0:
# optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
# else:
# optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
# else:
# optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
# scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps)
global_step = 0
logging.info("***** Running training *****")
......@@ -304,7 +316,10 @@ def main():
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
# I depricate FP16_Optimizer's backward func and replace as Apex document
# optimizer.backward(loss)
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment