Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
51c3f42d
Unverified
Commit
51c3f42d
authored
Feb 10, 2023
by
Yueming Hao
Committed by
GitHub
Feb 10, 2023
Browse files
Replace inefficient torch.sqrt taking scalar input with numpy.sqrt (#21496)
* fix rsqrt * fix typo
parent
b0d539cc
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
5 additions
and
8 deletions
+5
-8
src/transformers/models/reformer/modeling_reformer.py
src/transformers/models/reformer/modeling_reformer.py
+5
-8
No files found.
src/transformers/models/reformer/modeling_reformer.py
View file @
51c3f42d
...
...
@@ -519,7 +519,8 @@ class LSHSelfAttention(nn.Module, EfficientAttentionMixin):
)
# scale key vectors
key_vectors
=
self
.
_len_and_dim_norm
(
query_key_vectors
)
sqrt_num
=
np
.
sqrt
(
self
.
attention_head_size
)
key_vectors
=
self
.
_len_and_dim_norm
(
query_key_vectors
,
sqrt_num
)
# set query_vectors to query key vectors if LSH self attention
query_vectors
=
query_vectors
if
query_vectors
is
not
None
else
query_key_vectors
...
...
@@ -969,14 +970,12 @@ class LSHSelfAttention(nn.Module, EfficientAttentionMixin):
return
indices
def
_len_and_dim_norm
(
self
,
vectors
):
def
_len_and_dim_norm
(
self
,
vectors
,
sqrt_num
):
"""
length and attention head size dim normalization
"""
vectors
=
self
.
_len_norm
(
vectors
)
vectors
=
vectors
*
torch
.
rsqrt
(
torch
.
tensor
(
self
.
attention_head_size
,
device
=
vectors
.
device
,
dtype
=
vectors
.
dtype
)
)
vectors
=
vectors
/
sqrt_num
return
vectors
def
_len_norm
(
self
,
x
,
epsilon
=
1e-6
):
...
...
@@ -1114,9 +1113,7 @@ class LocalSelfAttention(nn.Module, EfficientAttentionMixin):
)
# normalize key vectors
key_vectors
=
key_vectors
/
torch
.
sqrt
(
torch
.
tensor
(
self
.
attention_head_size
,
device
=
key_vectors
.
device
,
dtype
=
key_vectors
.
dtype
)
)
key_vectors
=
key_vectors
/
np
.
sqrt
(
self
.
attention_head_size
)
# get sequence length indices
indices
=
torch
.
arange
(
sequence_length
,
device
=
query_vectors
.
device
).
repeat
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment