Unverified Commit 51a98c40 authored by Yoach Lacombe's avatar Yoach Lacombe Committed by GitHub
Browse files

remove failing tests and clean FE files (#27414)

* remove failing tests and clean FE files

* remove same similar text from tvlt
parent e38348ae
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
# limitations under the License. # limitations under the License.
""" Feature extractor class for Pop2Piano""" """ Feature extractor class for Pop2Piano"""
import copy
import warnings import warnings
from typing import List, Optional, Union from typing import List, Optional, Union
...@@ -448,16 +447,3 @@ class Pop2PianoFeatureExtractor(SequenceFeatureExtractor): ...@@ -448,16 +447,3 @@ class Pop2PianoFeatureExtractor(SequenceFeatureExtractor):
) )
return output return output
def to_dict(self):
"""
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
output["feature_extractor_type"] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
...@@ -16,7 +16,6 @@ ...@@ -16,7 +16,6 @@
Feature extractor class for SeamlessM4T Feature extractor class for SeamlessM4T
""" """
import copy
from typing import List, Optional, Union from typing import List, Optional, Union
import numpy as np import numpy as np
...@@ -288,18 +287,3 @@ class SeamlessM4TFeatureExtractor(SequenceFeatureExtractor): ...@@ -288,18 +287,3 @@ class SeamlessM4TFeatureExtractor(SequenceFeatureExtractor):
padded_inputs = padded_inputs.convert_to_tensors(return_tensors) padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs return padded_inputs
def to_dict(self):
"""
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
output["feature_extractor_type"] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "window" in output:
del output["window"]
return output
...@@ -15,8 +15,7 @@ ...@@ -15,8 +15,7 @@
""" """
Feature extractor class for Whisper Feature extractor class for Whisper
""" """
import copy from typing import List, Optional, Union
from typing import Any, Dict, List, Optional, Union
import numpy as np import numpy as np
...@@ -262,16 +261,3 @@ class WhisperFeatureExtractor(SequenceFeatureExtractor): ...@@ -262,16 +261,3 @@ class WhisperFeatureExtractor(SequenceFeatureExtractor):
padded_inputs = padded_inputs.convert_to_tensors(return_tensors) padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs return padded_inputs
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
output["feature_extractor_type"] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
...@@ -15,15 +15,13 @@ ...@@ -15,15 +15,13 @@
""" Testing suite for the TVLT feature extraction. """ """ Testing suite for the TVLT feature extraction. """
import itertools import itertools
import os
import random import random
import tempfile
import unittest import unittest
import numpy as np import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
...@@ -123,36 +121,6 @@ class TvltFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.Tes ...@@ -123,36 +121,6 @@ class TvltFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.Tes
self.assertTrue(hasattr(feature_extractor, "chunk_length")) self.assertTrue(hasattr(feature_extractor, "chunk_length"))
self.assertTrue(hasattr(feature_extractor, "sampling_rate")) self.assertTrue(hasattr(feature_extractor, "sampling_rate"))
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = dict_first.pop("mel_filters")
mel_2 = dict_second.pop("mel_filters")
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = dict_first.pop("mel_filters")
mel_2 = dict_second.pop("mel_filters")
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_call(self): def test_call(self):
# Initialize feature_extractor # Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment