Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
518307df
Commit
518307df
authored
Sep 05, 2019
by
thomwolf
Browse files
test suite independent of framework
parent
9d0a11a6
Changes
20
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
593 additions
and
259 deletions
+593
-259
.circleci/config.yml
.circleci/config.yml
+4
-5
pytorch_transformers/__init__.py
pytorch_transformers/__init__.py
+14
-7
pytorch_transformers/convert_pytorch_checkpoint_to_tf.py
pytorch_transformers/convert_pytorch_checkpoint_to_tf.py
+23
-14
pytorch_transformers/modeling_tf_bert.py
pytorch_transformers/modeling_tf_bert.py
+321
-37
pytorch_transformers/tests/modeling_auto_test.py
pytorch_transformers/tests/modeling_auto_test.py
+11
-8
pytorch_transformers/tests/modeling_bert_test.py
pytorch_transformers/tests/modeling_bert_test.py
+11
-6
pytorch_transformers/tests/modeling_common_test.py
pytorch_transformers/tests/modeling_common_test.py
+8
-4
pytorch_transformers/tests/modeling_distilbert_test.py
pytorch_transformers/tests/modeling_distilbert_test.py
+9
-3
pytorch_transformers/tests/modeling_gpt2_test.py
pytorch_transformers/tests/modeling_gpt2_test.py
+7
-3
pytorch_transformers/tests/modeling_openai_test.py
pytorch_transformers/tests/modeling_openai_test.py
+7
-3
pytorch_transformers/tests/modeling_roberta_test.py
pytorch_transformers/tests/modeling_roberta_test.py
+9
-4
pytorch_transformers/tests/modeling_tf_bert_test.py
pytorch_transformers/tests/modeling_tf_bert_test.py
+108
-127
pytorch_transformers/tests/modeling_tf_common_test.py
pytorch_transformers/tests/modeling_tf_common_test.py
+1
-8
pytorch_transformers/tests/modeling_transfo_xl_test.py
pytorch_transformers/tests/modeling_transfo_xl_test.py
+8
-4
pytorch_transformers/tests/modeling_xlm_test.py
pytorch_transformers/tests/modeling_xlm_test.py
+11
-5
pytorch_transformers/tests/modeling_xlnet_test.py
pytorch_transformers/tests/modeling_xlnet_test.py
+9
-4
pytorch_transformers/tests/optimization_test.py
pytorch_transformers/tests/optimization_test.py
+11
-5
pytorch_transformers/tests/tokenization_auto_test.py
pytorch_transformers/tests/tokenization_auto_test.py
+3
-4
pytorch_transformers/tests/tokenization_transfo_xl_test.py
pytorch_transformers/tests/tokenization_transfo_xl_test.py
+9
-3
pytorch_transformers/tokenization_transfo_xl.py
pytorch_transformers/tokenization_transfo_xl.py
+9
-5
No files found.
.circleci/config.yml
View file @
518307df
...
...
@@ -10,7 +10,7 @@ jobs:
-
checkout
-
run
:
sudo pip install torch
-
run
:
sudo pip install --progress-bar off .
-
run
:
sudo pip install pytest codecov pytest-cov
-
run
:
sudo pip install pytest
==5.0.1
codecov pytest-cov
-
run
:
sudo pip install tensorboardX scikit-learn
-
run
:
python -m pytest -sv ./pytorch_transformers/tests/ --cov
-
run
:
python -m pytest -sv ./examples/
...
...
@@ -25,10 +25,9 @@ jobs:
-
checkout
-
run
:
sudo pip install tensorflow==2.0.0-rc0
-
run
:
sudo pip install --progress-bar off .
-
run
:
sudo pip install pytest codecov pytest-cov
-
run
:
sudo pip install pytest
==5.0.1
codecov pytest-cov
-
run
:
sudo pip install tensorboardX scikit-learn
-
run
:
python -m pytest -sv ./pytorch_transformers/tests/ --cov
-
run
:
python -m pytest -sv ./examples/
-
run
:
codecov
build_py2_torch
:
working_directory
:
~/pytorch-transformers
...
...
@@ -40,7 +39,7 @@ jobs:
-
checkout
-
run
:
sudo pip install torch
-
run
:
sudo pip install --progress-bar off .
-
run
:
sudo pip install pytest codecov pytest-cov
-
run
:
sudo pip install pytest
==5.0.1
codecov pytest-cov
-
run
:
python -m pytest -sv ./pytorch_transformers/tests/ --cov
-
run
:
codecov
build_py2_tf
:
...
...
@@ -53,7 +52,7 @@ jobs:
-
checkout
-
run
:
sudo pip install tensorflow==2.0.0-rc0
-
run
:
sudo pip install --progress-bar off .
-
run
:
sudo pip install pytest codecov pytest-cov
-
run
:
sudo pip install pytest
==5.0.1
codecov pytest-cov
-
run
:
python -m pytest -sv ./pytorch_transformers/tests/ --cov
-
run
:
codecov
deploy_doc
:
...
...
pytorch_transformers/__init__.py
View file @
518307df
...
...
@@ -43,11 +43,11 @@ from .configuration_distilbert import DistilBertConfig, DISTILBERT_PRETRAINED_CO
# Modeling
try
:
import
torch
torch_available
=
True
# pylint: disable=invalid-name
_
torch_available
=
True
# pylint: disable=invalid-name
except
ImportError
:
torch_available
=
False
# pylint: disable=invalid-name
_
torch_available
=
False
# pylint: disable=invalid-name
if
torch_available
:
if
_
torch_available
:
logger
.
info
(
"PyTorch version {} available."
.
format
(
torch
.
__version__
))
from
.modeling_utils
import
(
PreTrainedModel
,
prune_layer
,
Conv1D
)
...
...
@@ -87,19 +87,26 @@ if torch_available:
# TensorFlow
try
:
import
tensorflow
as
tf
tf_available
=
True
# pylint: disable=invalid-name
assert
int
(
tf
.
__version__
[
0
])
>=
2
_tf_available
=
True
# pylint: disable=invalid-name
except
ImportError
:
tf_available
=
False
# pylint: disable=invalid-name
_
tf_available
=
False
# pylint: disable=invalid-name
if
tf_available
:
if
_
tf_available
:
logger
.
info
(
"TensorFlow version {} available."
.
format
(
tf
.
__version__
))
from
.modeling_tf_utils
import
TFPreTrainedModel
from
.modeling_tf_bert
import
(
TFBertPreTrainedModel
,
TFBertModel
,
TFBertForPreTraining
,
TFBertForMaskedLM
,
TFBertForNextSentencePrediction
,
load_pt_weights_in_
ber
t
)
TFBertForMaskedLM
,
TFBertForNextSentencePrediction
,
load_
bert_
pt_weights_in_t
f
)
# Files and general utilities
from
.file_utils
import
(
PYTORCH_TRANSFORMERS_CACHE
,
PYTORCH_PRETRAINED_BERT_CACHE
,
cached_path
,
add_start_docstrings
,
add_end_docstrings
,
WEIGHTS_NAME
,
TF_WEIGHTS_NAME
,
CONFIG_NAME
)
def
is_torch_available
():
return
_torch_available
def
is_tf_available
():
return
_tf_available
pytorch_transformers/convert_
bert_
pytorch_checkpoint_to_tf.py
→
pytorch_transformers/convert_pytorch_checkpoint_to_tf.py
View file @
518307df
...
...
@@ -12,7 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert
BERT
checkpoint
.
"""
"""
Convert
pytorch
checkpoint
s to TensorFlow
"""
from
__future__
import
absolute_import
from
__future__
import
division
...
...
@@ -21,19 +21,22 @@ from __future__ import print_function
import
argparse
import
tensorflow
as
tf
from
pytorch_transformers
import
BertConfig
,
TFBertForPreTraining
,
load_pt_weights_in_
ber
t
from
pytorch_transformers
import
BertConfig
,
TFBertForPreTraining
,
load_
bert_
pt_weights_in_t
f
import
logging
logging
.
basicConfig
(
level
=
logging
.
INFO
)
def
convert_bert_checkpoint_to_tf
(
pytorch_checkpoint_path
,
bert_config_file
,
tf_dump_path
):
# Initialise TF model
config
=
BertConfig
.
from_json_file
(
bert_config_file
)
print
(
"Building TensorFlow model from configuration: {}"
.
format
(
str
(
config
)))
model
=
TFBertForPreTraining
(
config
)
def
convert_pt_checkpoint_to_tf
(
model_type
,
pytorch_checkpoint_path
,
config_file
,
tf_dump_path
):
if
model_type
==
'bert'
:
# Initialise TF model
config
=
BertConfig
.
from_json_file
(
config_file
)
print
(
"Building TensorFlow model from configuration: {}"
.
format
(
str
(
config
)))
model
=
TFBertForPreTraining
(
config
)
# Load weights from tf checkpoint
model
=
load_pt_weights_in_bert
(
model
,
config
,
pytorch_checkpoint_path
)
# Load weights from tf checkpoint
model
=
load_bert_pt_weights_in_tf
(
model
,
config
,
pytorch_checkpoint_path
)
else
:
raise
ValueError
(
"Unrecognized model type, should be one of ['bert']."
)
# Save pytorch-model
print
(
"Save TensorFlow model to {}"
.
format
(
tf_dump_path
))
...
...
@@ -43,16 +46,21 @@ def convert_bert_checkpoint_to_tf(pytorch_checkpoint_path, bert_config_file, tf_
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
()
## Required parameters
parser
.
add_argument
(
"--model_type"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Model type selcted in the list of."
)
parser
.
add_argument
(
"--pytorch_checkpoint_path"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Path to the PyTorch checkpoint path."
)
parser
.
add_argument
(
"--
bert_
config_file"
,
parser
.
add_argument
(
"--config_file"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The config json file corresponding to the pre-trained
BERT
model.
\n
"
help
=
"The config json file corresponding to the pre-trained model.
\n
"
"This specifies the model architecture."
)
parser
.
add_argument
(
"--tf_dump_path"
,
default
=
None
,
...
...
@@ -60,6 +68,7 @@ if __name__ == "__main__":
required
=
True
,
help
=
"Path to the output Tensorflow dump file."
)
args
=
parser
.
parse_args
()
convert_bert_checkpoint_to_tf
(
args
.
pytorch_checkpoint_path
,
args
.
bert_config_file
,
args
.
tf_dump_path
)
convert_pt_checkpoint_to_tf
(
args
.
model_type
.
lower
(),
args
.
pytorch_checkpoint_path
,
args
.
config_file
,
args
.
tf_dump_path
)
pytorch_transformers/modeling_tf_bert.py
View file @
518307df
This diff is collapsed.
Click to expand it.
pytorch_transformers/tests/modeling_auto_test.py
View file @
518307df
...
...
@@ -21,15 +21,18 @@ import shutil
import
pytest
import
logging
from
pytorch_transformers
import
(
AutoConfig
,
BertConfig
,
AutoModel
,
BertModel
,
AutoModelWithLMHead
,
BertForMaskedLM
,
AutoModelForSequenceClassification
,
BertForSequenceClassification
,
AutoModelForQuestionAnswering
,
BertForQuestionAnswering
)
from
pytorch_transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
try
:
from
pytorch_transformers
import
(
AutoConfig
,
BertConfig
,
AutoModel
,
BertModel
,
AutoModelWithLMHead
,
BertForMaskedLM
,
AutoModelForSequenceClassification
,
BertForSequenceClassification
,
AutoModelForQuestionAnswering
,
BertForQuestionAnswering
)
from
pytorch_transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
class
AutoModelTest
(
unittest
.
TestCase
):
...
...
pytorch_transformers/tests/modeling_bert_test.py
View file @
518307df
...
...
@@ -20,21 +20,26 @@ import unittest
import
shutil
import
pytest
from
pytorch_transformers
import
(
BertConfig
,
BertModel
,
BertForMaskedLM
,
BertForNextSentencePrediction
,
BertForPreTraining
,
BertForQuestionAnswering
,
BertForSequenceClassification
,
BertForTokenClassification
,
BertForMultipleChoice
)
from
pytorch_transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
pytorch_transformers
import
is_torch_available
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
try
:
from
pytorch_transformers
import
(
BertConfig
,
BertModel
,
BertForMaskedLM
,
BertForNextSentencePrediction
,
BertForPreTraining
,
BertForQuestionAnswering
,
BertForSequenceClassification
,
BertForTokenClassification
,
BertForMultipleChoice
)
from
pytorch_transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
class
BertModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
BertModel
,
BertForMaskedLM
,
BertForNextSentencePrediction
,
BertForPreTraining
,
BertForQuestionAnswering
,
BertForSequenceClassification
,
BertForTokenClassification
)
BertForTokenClassification
)
if
is_torch_available
()
else
()
class
BertModelTester
(
object
):
...
...
pytorch_transformers/tests/modeling_common_test.py
View file @
518307df
...
...
@@ -25,12 +25,16 @@ import uuid
import
unittest
import
logging
import
pytest
import
torch
try
:
import
torch
from
pytorch_transformers
import
(
PretrainedConfig
,
PreTrainedModel
,
BertModel
,
BertConfig
,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
,
GPT2LMHeadModel
,
GPT2Config
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
)
from
pytorch_transformers
import
(
PretrainedConfig
,
PreTrainedModel
,
BertModel
,
BertConfig
,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
,
GPT2LMHeadModel
,
GPT2Config
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
)
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
def
_config_zero_init
(
config
):
...
...
pytorch_transformers/tests/modeling_distilbert_test.py
View file @
518307df
...
...
@@ -17,9 +17,15 @@ from __future__ import division
from
__future__
import
print_function
import
unittest
import
pytest
from
pytorch_transformers
import
(
DistilBertConfig
,
DistilBertModel
,
DistilBertForMaskedLM
,
DistilBertForQuestionAnswering
,
DistilBertForSequenceClassification
)
from
pytorch_transformers
import
is_torch_available
try
:
from
pytorch_transformers
import
(
DistilBertConfig
,
DistilBertModel
,
DistilBertForMaskedLM
,
DistilBertForQuestionAnswering
,
DistilBertForSequenceClassification
)
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
...
...
@@ -28,7 +34,7 @@ from .configuration_common_test import ConfigTester
class
DistilBertModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
DistilBertModel
,
DistilBertForMaskedLM
,
DistilBertForQuestionAnswering
,
DistilBertForSequenceClassification
)
DistilBertForSequenceClassification
)
if
is_torch_available
()
else
None
test_pruning
=
True
test_torchscript
=
True
test_resize_embeddings
=
True
...
...
pytorch_transformers/tests/modeling_gpt2_test.py
View file @
518307df
...
...
@@ -20,9 +20,13 @@ import unittest
import
pytest
import
shutil
from
pytorch_transformers
import
is_torch_available
from
pytorch_transformers
import
(
GPT2Config
,
GPT2Model
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
try
:
from
pytorch_transformers
import
(
GPT2Config
,
GPT2Model
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
...
...
@@ -30,7 +34,7 @@ from .configuration_common_test import ConfigTester
class
GPT2ModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
GPT2Model
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
all_model_classes
=
(
GPT2Model
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
if
is_torch_available
()
else
()
class
GPT2ModelTester
(
object
):
...
...
pytorch_transformers/tests/modeling_openai_test.py
View file @
518307df
...
...
@@ -20,9 +20,13 @@ import unittest
import
pytest
import
shutil
from
pytorch_transformers
import
is_torch_available
from
pytorch_transformers
import
(
OpenAIGPTConfig
,
OpenAIGPTModel
,
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
try
:
from
pytorch_transformers
import
(
OpenAIGPTConfig
,
OpenAIGPTModel
,
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
...
...
@@ -30,7 +34,7 @@ from .configuration_common_test import ConfigTester
class
OpenAIGPTModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
OpenAIGPTModel
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
all_model_classes
=
(
OpenAIGPTModel
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
if
is_torch_available
()
else
()
class
OpenAIGPTModelTester
(
object
):
...
...
pytorch_transformers/tests/modeling_roberta_test.py
View file @
518307df
...
...
@@ -19,10 +19,15 @@ from __future__ import print_function
import
unittest
import
shutil
import
pytest
import
torch
from
pytorch_transformers
import
(
RobertaConfig
,
RobertaModel
,
RobertaForMaskedLM
,
RobertaForSequenceClassification
)
from
pytorch_transformers.modeling_roberta
import
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
from
pytorch_transformers
import
is_torch_available
try
:
import
torch
from
pytorch_transformers
import
(
RobertaConfig
,
RobertaModel
,
RobertaForMaskedLM
,
RobertaForSequenceClassification
)
from
pytorch_transformers.modeling_roberta
import
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
...
...
@@ -30,7 +35,7 @@ from .configuration_common_test import ConfigTester
class
RobertaModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
RobertaForMaskedLM
,
RobertaModel
)
all_model_classes
=
(
RobertaForMaskedLM
,
RobertaModel
)
if
is_torch_available
()
else
()
class
RobertaModelTester
(
object
):
...
...
pytorch_transformers/tests/modeling_tf_bert_test.py
View file @
518307df
...
...
@@ -24,21 +24,27 @@ import sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
pytorch_transformers
import
BertConfig
,
is_tf_available
try
:
import
tensorflow
as
tf
from
pytorch_transformers
import
(
BertConfig
)
from
pytorch_transformers.modeling_tf_bert
import
TFBertModel
,
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
pytorch_transformers.modeling_tf_bert
import
(
TFBertModel
,
TFBertForMaskedLM
,
TFBertForNextSentencePrediction
,
TFBertForPreTraining
,
TFBertForSequenceClassification
,
TFBertForMultipleChoice
,
TFBertForTokenClassification
,
TFBertForQuestionAnswering
,
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
)
except
ImportError
:
p
ass
p
ytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
class
TFBertModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFBertModel
,)
# BertForMaskedLM, BertForNextSentencePrediction,
# BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification,
# BertForTokenClassification)
all_model_classes
=
(
TFBertModel
,
TFBertForMaskedLM
,
TFBertForNextSentencePrediction
,
TFBertForPreTraining
,
TFBertForQuestionAnswering
,
TFBertForSequenceClassification
,
TFBertForTokenClassification
)
if
is_tf_available
()
else
()
class
TFBertModelTester
(
object
):
...
...
@@ -123,14 +129,8 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
return
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
check_loss_output
(
self
,
result
):
self
.
parent
.
assertListEqual
(
list
(
result
[
"loss"
].
size
()),
[])
def
create_and_check_bert_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFBertModel
(
config
=
config
)
# model.eval()
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
...
...
@@ -152,125 +152,115 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
def
create_and_check_bert_for_masked_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
pass
# model = BertForMaskedLM(config=config)
# model.eval()
# loss, prediction_scores = model(input_ids, token_type_ids, input_mask, token_labels)
# result = {
# "loss": loss,
# "prediction_scores": prediction_scores,
# }
# self.parent.assertListEqual(
# list(result["prediction_scores"].size()),
# [self.batch_size, self.seq_length, self.vocab_size])
# self.check_loss_output(result)
model
=
TFBertForMaskedLM
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
prediction_scores
,
=
model
(
inputs
)
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
create_and_check_bert_for_next_sequence_prediction
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
pass
# model = BertForNextSentencePrediction(config=config)
# model.eval()
# loss, seq_relationship_score = model(input_ids, token_type_ids, input_mask, sequence_labels)
# result = {
# "loss": loss,
# "seq_relationship_score": seq_relationship_score,
# }
# self.parent.assertListEqual(
# list(result["seq_relationship_score"].size()),
# [self.batch_size, 2])
# self.check_loss_output(result)
model
=
TFBertForNextSentencePrediction
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
seq_relationship_score
,
=
model
(
inputs
)
result
=
{
"seq_relationship_score"
:
seq_relationship_score
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"seq_relationship_score"
].
shape
),
[
self
.
batch_size
,
2
])
def
create_and_check_bert_for_pretraining
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
pass
# model = BertForPreTraining(config=config)
# model.eval()
# loss, prediction_scores, seq_relationship_score = model(input_ids, token_type_ids, input_mask, token_labels, sequence_labels)
# result = {
# "loss": loss,
# "prediction_scores": prediction_scores,
# "seq_relationship_score": seq_relationship_score,
# }
# self.parent.assertListEqual(
# list(result["prediction_scores"].size()),
# [self.batch_size, self.seq_length, self.vocab_size])
# self.parent.assertListEqual(
# list(result["seq_relationship_score"].size()),
# [self.batch_size, 2])
# self.check_loss_output(result)
model
=
TFBertForPreTraining
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
prediction_scores
,
seq_relationship_score
=
model
(
inputs
)
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
"seq_relationship_score"
:
seq_relationship_score
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"seq_relationship_score"
].
shape
),
[
self
.
batch_size
,
2
])
def
create_and_check_bert_for_question_answering
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
pass
# model = BertForQuestionAnswering(config=config)
# model.eval()
# loss, start_logits, end_logits = model(input_ids, token_type_ids, input_mask, sequence_labels, sequence_labels)
# result = {
# "loss": loss,
# "start_logits": start_logits,
# "end_logits": end_logits,
# }
# self.parent.assertListEqual(
# list(result["start_logits"].size()),
# [self.batch_size, self.seq_length])
# self.parent.assertListEqual(
# list(result["end_logits"].size()),
# [self.batch_size, self.seq_length])
# self.check_loss_output(result)
def
create_and_check_bert_for_sequence_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
TFBertForSequenceClassification
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
logits
,
=
model
(
inputs
)
result
=
{
"logits"
:
logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_labels
])
def
create_and_check_bert_for_sequence_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
pass
# config.num_labels = self.num_labels
# model = BertForSequenceClassification(config)
# model.eval()
# loss, logits = model(input_ids, token_type_ids, input_mask, sequence_labels)
# result = {
# "loss": loss,
# "logits": logits,
# }
# self.parent.assertListEqual(
# list(result["logits"].size()),
# [self.batch_size, self.num_labels])
# self.check_loss_output(result)
def
create_and_check_bert_for_multiple_choice
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_choices
=
self
.
num_choices
model
=
TFBertForMultipleChoice
(
config
=
config
)
multiple_choice_inputs_ids
=
tf
.
tile
(
tf
.
expand_dims
(
input_ids
,
1
),
(
1
,
self
.
num_choices
,
1
))
multiple_choice_input_mask
=
tf
.
tile
(
tf
.
expand_dims
(
input_mask
,
1
),
(
1
,
self
.
num_choices
,
1
))
multiple_choice_token_type_ids
=
tf
.
tile
(
tf
.
expand_dims
(
token_type_ids
,
1
),
(
1
,
self
.
num_choices
,
1
))
inputs
=
{
'input_ids'
:
multiple_choice_inputs_ids
,
'attention_mask'
:
multiple_choice_input_mask
,
'token_type_ids'
:
multiple_choice_token_type_ids
}
logits
,
=
model
(
inputs
)
result
=
{
"logits"
:
logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_choices
])
def
create_and_check_bert_for_token_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
pass
# config.num_labels = self.num_labels
# model = BertForTokenClassification(config=config)
# model.eval()
# loss, logits = model(input_ids, token_type_ids, input_mask, token_labels)
# result = {
# "loss": loss,
# "logits": logits,
# }
# self.parent.assertListEqual(
# list(result["logits"].size()),
# [self.batch_size, self.seq_length, self.num_labels])
# self.check_loss_output(result)
config
.
num_labels
=
self
.
num_labels
model
=
TFBertForTokenClassification
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
logits
,
=
model
(
inputs
)
result
=
{
"logits"
:
logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
num_labels
])
def
create_and_check_bert_for_multiple_choice
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
pass
# config.num_choices = self.num_choices
# model = BertForMultipleChoice(config=config)
# model.eval()
# multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
# multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
# multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
# loss, logits = model(multiple_choice_inputs_ids,
# multiple_choice_token_type_ids,
# multiple_choice_input_mask,
# choice_labels)
# result = {
# "loss": loss,
# "logits": logits,
# }
# self.parent.assertListEqual(
# list(result["logits"].size()),
# [self.batch_size, self.num_choices])
# self.check_loss_output(result)
def
create_and_check_bert_for_question_answering
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFBertForQuestionAnswering
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
start_logits
,
end_logits
=
model
(
inputs
)
result
=
{
"start_logits"
:
start_logits
.
numpy
(),
"end_logits"
:
end_logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"start_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"end_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
def
prepare_config_and_inputs_for_common
(
self
):
...
...
@@ -287,48 +277,39 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_bert_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_bert_model
(
*
config_and_inputs
)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_for_masked_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_bert_for_masked_lm
(
*
config_and_inputs
)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_for_multiple_choice
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_bert_for_multiple_choice
(
*
config_and_inputs
)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_for_next_sequence_prediction
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_bert_for_next_sequence_prediction
(
*
config_and_inputs
)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_for_pretraining
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_bert_for_pretraining
(
*
config_and_inputs
)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_for_question_answering
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_bert_for_question_answering
(
*
config_and_inputs
)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_for_sequence_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_bert_for_sequence_classification
(
*
config_and_inputs
)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_for_token_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_bert_for_token_classification
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/pytorch_transformers_test/"
for
model_name
in
list
(
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
...
...
pytorch_transformers/tests/modeling_tf_common_test.py
View file @
518307df
...
...
@@ -30,7 +30,7 @@ try:
from
pytorch_transformers
import
TFPreTrainedModel
# from pytorch_transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP
except
ImportError
:
p
ass
p
ytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
def
_config_zero_init
(
config
):
...
...
@@ -50,7 +50,6 @@ class TFCommonTestCases:
test_pruning
=
True
test_resize_embeddings
=
True
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_initialization
(
self
):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...
...
@@ -64,7 +63,6 @@ class TFCommonTestCases:
# msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_attention_outputs
(
self
):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...
...
@@ -105,7 +103,6 @@ class TFCommonTestCases:
# self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length])
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_headmasking
(
self
):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...
...
@@ -153,7 +150,6 @@ class TFCommonTestCases:
# attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_head_pruning
(
self
):
pass
# if not self.test_pruning:
...
...
@@ -181,7 +177,6 @@ class TFCommonTestCases:
# attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_hidden_states_output
(
self
):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...
...
@@ -201,7 +196,6 @@ class TFCommonTestCases:
# [self.model_tester.seq_length, self.model_tester.hidden_size])
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_resize_tokens_embeddings
(
self
):
pass
# original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...
...
@@ -238,7 +232,6 @@ class TFCommonTestCases:
# self.assertTrue(models_equal)
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_tie_model_weights
(
self
):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...
...
pytorch_transformers/tests/modeling_transfo_xl_test.py
View file @
518307df
...
...
@@ -21,17 +21,21 @@ import random
import
shutil
import
pytest
import
torch
from
pytorch_transformers
import
is_
torch
_available
from
pytorch_transformers
import
(
TransfoXLConfig
,
TransfoXLModel
,
TransfoXLLMHeadModel
)
from
pytorch_transformers.modeling_transfo_xl
import
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
try
:
import
torch
from
pytorch_transformers
import
(
TransfoXLConfig
,
TransfoXLModel
,
TransfoXLLMHeadModel
)
from
pytorch_transformers.modeling_transfo_xl
import
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
TransfoXLModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
TransfoXLModel
,
TransfoXLLMHeadModel
)
all_model_classes
=
(
TransfoXLModel
,
TransfoXLLMHeadModel
)
if
is_torch_available
()
else
()
test_pruning
=
False
test_torchscript
=
False
test_resize_embeddings
=
False
...
...
pytorch_transformers/tests/modeling_xlm_test.py
View file @
518307df
...
...
@@ -20,8 +20,14 @@ import unittest
import
shutil
import
pytest
from
pytorch_transformers
import
(
XLMConfig
,
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMForSequenceClassification
)
from
pytorch_transformers.modeling_xlm
import
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
from
pytorch_transformers
import
is_torch_available
try
:
from
pytorch_transformers
import
(
XLMConfig
,
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMForSequenceClassification
)
from
pytorch_transformers.modeling_xlm
import
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
...
...
@@ -29,9 +35,9 @@ from .configuration_common_test import ConfigTester
class
XLMModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
XLMModel
,
XLMWithLMHeadModel
,
XLMFor
QuestionAnswering
,
XLMForSequenceClassification
)
# , XLMForSequenceClassification, XLMForTokenClassification),
all_model_classes
=
(
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMFor
SequenceClassification
)
if
is_torch_available
()
else
()
class
XLMModelTester
(
object
):
...
...
pytorch_transformers/tests/modeling_xlnet_test.py
View file @
518307df
...
...
@@ -23,10 +23,15 @@ import random
import
shutil
import
pytest
import
torch
from
pytorch_transformers
import
is_
torch
_available
from
pytorch_transformers
import
(
XLNetConfig
,
XLNetModel
,
XLNetLMHeadModel
,
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
from
pytorch_transformers.modeling_xlnet
import
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
try
:
import
torch
from
pytorch_transformers
import
(
XLNetConfig
,
XLNetModel
,
XLNetLMHeadModel
,
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
from
pytorch_transformers.modeling_xlnet
import
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
...
...
@@ -34,7 +39,7 @@ from .configuration_common_test import ConfigTester
class
XLNetModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
XLNetModel
,
XLNetLMHeadModel
,
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
if
is_torch_available
()
else
()
test_pruning
=
False
class
XLNetModelTester
(
object
):
...
...
pytorch_transformers/tests/optimization_test.py
View file @
518307df
...
...
@@ -18,11 +18,17 @@ from __future__ import print_function
import
unittest
import
os
import
pytest
import
torch
from
pytorch_transformers
import
is_
torch
_available
from
pytorch_transformers
import
(
AdamW
,
ConstantLRSchedule
,
WarmupConstantSchedule
,
WarmupCosineSchedule
,
WarmupCosineWithHardRestartsSchedule
,
WarmupLinearSchedule
)
try
:
import
torch
from
pytorch_transformers
import
(
AdamW
,
ConstantLRSchedule
,
WarmupConstantSchedule
,
WarmupCosineSchedule
,
WarmupCosineWithHardRestartsSchedule
,
WarmupLinearSchedule
)
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.tokenization_tests_commons
import
TemporaryDirectory
...
...
@@ -71,8 +77,8 @@ class OptimizationTest(unittest.TestCase):
class
ScheduleInitTest
(
unittest
.
TestCase
):
m
=
torch
.
nn
.
Linear
(
50
,
50
)
optimizer
=
AdamW
(
m
.
parameters
(),
lr
=
10.
)
m
=
torch
.
nn
.
Linear
(
50
,
50
)
if
is_torch_available
()
else
None
optimizer
=
AdamW
(
m
.
parameters
(),
lr
=
10.
)
if
is_torch_available
()
else
None
num_steps
=
10
def
assertListAlmostEqual
(
self
,
list1
,
list2
,
tol
):
...
...
pytorch_transformers/tests/tokenization_auto_test.py
View file @
518307df
...
...
@@ -22,20 +22,19 @@ import pytest
import
logging
from
pytorch_transformers
import
AutoTokenizer
,
BertTokenizer
,
AutoTokenizer
,
GPT2Tokenizer
from
pytorch_transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
pytorch_transformers.modeling_gpt2
import
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
from
pytorch_transformers
import
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
class
AutoTokenizerTest
(
unittest
.
TestCase
):
def
test_tokenizer_from_pretrained
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
for
model_name
in
list
(
BERT_PRETRAINED_
MODEL
_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
BERT_PRETRAINED_
CONFIG
_ARCHIVE_MAP
.
keys
())[:
1
]:
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
tokenizer
)
self
.
assertIsInstance
(
tokenizer
,
BertTokenizer
)
self
.
assertGreater
(
len
(
tokenizer
),
0
)
for
model_name
in
list
(
GPT2_PRETRAINED_
MODEL
_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
GPT2_PRETRAINED_
CONFIG
_ARCHIVE_MAP
.
keys
())[:
1
]:
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
tokenizer
)
self
.
assertIsInstance
(
tokenizer
,
GPT2Tokenizer
)
...
...
pytorch_transformers/tests/tokenization_transfo_xl_test.py
View file @
518307df
...
...
@@ -16,15 +16,21 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import
os
import
unittest
import
pytest
from
io
import
open
from
pytorch_transformers
.tokenization_transfo_xl
import
TransfoXLTokenizer
,
VOCAB_FILES_NAMES
from
pytorch_transformers
import
is_torch_available
from
.
tokenization_tests_commons
import
CommonTestCases
try
:
from
pytorch_transformers.tokenization_transfo_xl
import
TransfoXLTokenizer
,
VOCAB_FILES_NAMES
except
ImportError
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
# TODO: untangle Transfo-XL tokenizer from torch.load and torch.save
from
.tokenization_tests_commons
import
CommonTestCases
class
TransfoXLTokenizationTest
(
CommonTestCases
.
CommonTokenizerTester
):
tokenizer_class
=
TransfoXLTokenizer
tokenizer_class
=
TransfoXLTokenizer
if
is_torch_available
()
else
None
def
setUp
(
self
):
super
(
TransfoXLTokenizationTest
,
self
).
setUp
()
...
...
pytorch_transformers/tokenization_transfo_xl.py
View file @
518307df
...
...
@@ -26,16 +26,20 @@ import sys
from
collections
import
Counter
,
OrderedDict
from
io
import
open
import
torch
import
numpy
as
np
from
.file_utils
import
cached_path
from
.tokenization_utils
import
PreTrainedTokenizer
if
sys
.
version_info
[
0
]
==
2
:
import
cPickle
as
pickle
else
:
import
pickle
try
:
import
torch
except
ImportError
:
pass
# if sys.version_info[0] == 2:
# import cPickle as pickle
# else:
# import pickle
logger
=
logging
.
getLogger
(
__name__
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment