"vscode:/vscode.git/clone" did not exist on "0876b77f7fbda110d5e64c03880e34123f2cea88"
Unverified Commit 5041bc35 authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

Image transforms add center crop (#19718)



* Add center crop to transforms library

* Return PIL images if PIL image input by default

* Fixup and add docstring

* Trigger CI

* Update src/transformers/image_transforms.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/image_transforms.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* PR comments - move comments; unindent
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 44a40c14
......@@ -19,6 +19,8 @@ Most of those are only useful if you are studying the code of the image processo
## Image Transformations
[[autodoc]] image_transforms.center_crop
[[autodoc]] image_transforms.normalize
[[autodoc]] image_transforms.rescale
......
......@@ -317,3 +317,97 @@ def normalize(
image = to_channel_dimension_format(image, data_format) if data_format is not None else image
return image
def center_crop(
image: np.ndarray,
size: Tuple[int, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
return_numpy: Optional[bool] = None,
) -> np.ndarray:
"""
Crops the `image` to the specified `size` using a center crop. Note that if the image is too small to be cropped to
the size given, it will be padded (so the returned result will always be of size `size`).
Args:
image (`np.ndarray`):
The image to crop.
size (`Tuple[int, int]`):
The target size for the cropped image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
return_numpy (`bool`, *optional*):
Whether or not to return the cropped image as a numpy array. Used for backwards compatibility with the
previous ImageFeatureExtractionMixin method.
- Unset: will return the same type as the input image.
- `True`: will return a numpy array.
- `False`: will return a `PIL.Image.Image` object.
Returns:
`np.ndarray`: The cropped image.
"""
if isinstance(image, PIL.Image.Image):
warnings.warn(
"PIL.Image.Image inputs are deprecated and will be removed in v4.26.0. Please use numpy arrays instead.",
FutureWarning,
)
image = to_numpy_array(image)
return_numpy = False if return_numpy is None else return_numpy
else:
return_numpy = True if return_numpy is None else return_numpy
if not isinstance(image, np.ndarray):
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
if not isinstance(size, Iterable) or len(size) != 2:
raise ValueError("size must have 2 elements representing the height and width of the output image")
input_data_format = infer_channel_dimension_format(image)
output_data_format = data_format if data_format is not None else input_data_format
# We perform the crop in (C, H, W) format and then convert to the output format
image = to_channel_dimension_format(image, ChannelDimension.FIRST)
orig_height, orig_width = get_image_size(image)
crop_height, crop_width = size
# In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
top = (orig_height - crop_height) // 2
bottom = top + crop_height
# In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
left = (orig_width - crop_width) // 2
right = left + crop_width
# Check if cropped area is within image boundaries
if top >= 0 and bottom <= orig_height and left >= 0 and right <= orig_width:
image = image[..., top:bottom, left:right]
image = to_channel_dimension_format(image, output_data_format)
return image
# Otherwise, we may need to pad if the image is too small. Oh joy...
new_height = max(crop_height, orig_height)
new_width = max(crop_width, orig_width)
new_shape = image.shape[:-2] + (new_height, new_width)
new_image = np.zeros_like(image, shape=new_shape)
# If the image is too small, pad it with zeros
top_pad = (new_height - orig_height) // 2
bottom_pad = top_pad + orig_height
left_pad = (new_width - orig_width) // 2
right_pad = left_pad + orig_width
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image
top += top_pad
bottom += top_pad
left += left_pad
right += left_pad
new_image = new_image[..., max(0, top) : min(new_height, bottom), max(0, left) : min(new_width, right)]
new_image = to_channel_dimension_format(new_image, output_data_format)
if not return_numpy:
new_image = to_pil_image(new_image)
return new_image
......@@ -35,6 +35,7 @@ if is_vision_available():
import PIL.Image
from transformers.image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
resize,
......@@ -195,3 +196,26 @@ class ImageTransformsTester(unittest.TestCase):
self.assertIsInstance(normalized_image, np.ndarray)
self.assertEqual(normalized_image.shape, (3, 224, 224))
self.assertTrue(np.allclose(normalized_image, expected_image))
def test_center_crop(self):
image = np.random.randint(0, 256, (3, 224, 224))
# Test that exception is raised if inputs are incorrect
with self.assertRaises(ValueError):
center_crop(image, 10)
# Test result is correct - output data format is channels_first and center crop
# correctly computed
expected_image = image[:, 52:172, 82:142].transpose(1, 2, 0)
cropped_image = center_crop(image, (120, 60), data_format="channels_last")
self.assertIsInstance(cropped_image, np.ndarray)
self.assertEqual(cropped_image.shape, (120, 60, 3))
self.assertTrue(np.allclose(cropped_image, expected_image))
# Test that image is padded with zeros if crop size is larger than image size
expected_image = np.zeros((300, 260, 3))
expected_image[38:262, 18:242, :] = image.transpose((1, 2, 0))
cropped_image = center_crop(image, (300, 260), data_format="channels_last")
self.assertIsInstance(cropped_image, np.ndarray)
self.assertEqual(cropped_image.shape, (300, 260, 3))
self.assertTrue(np.allclose(cropped_image, expected_image))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment