"...resnet50_tensorflow.git" did not exist on "8d5c168450c28aa26b85197fa38a12644fba0b00"
Unverified Commit 4c21da5e authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Add ViTDet (#25524)

* First draft

* Fix READMEs

* Update return_dict

* Add more tests

* Fix docstrings

* Address comments

* Address more comments

* Address more comments

* Address more comments, fix test

* Fix test
parent 99c3d449
...@@ -486,6 +486,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h ...@@ -486,6 +486,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/main/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
......
...@@ -463,6 +463,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt ...@@ -463,6 +463,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/main/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
......
...@@ -435,6 +435,7 @@ conda install -c huggingface transformers ...@@ -435,6 +435,7 @@ conda install -c huggingface transformers
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (गूगल एआई से) कागज के साथ [एक इमेज इज़ वर्थ 16x16 वर्ड्स: ट्रांसफॉर्मर्स फॉर इमेज रिकॉग्निशन एट स्केल](https://arxiv.org/abs/2010.11929) एलेक्सी डोसोवित्स्की, लुकास बेयर, अलेक्जेंडर कोलेसनिकोव, डिर्क वीसेनबोर्न, शियाओहुआ झाई, थॉमस अनटरथिनर, मुस्तफा देहघानी, मैथियास मिंडरर, जॉर्ज हेगोल्ड, सिल्वेन गेली, जैकब उस्ज़कोरेइट द्वारा हॉल्सबी द्वारा पोस्ट किया गया। 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (गूगल एआई से) कागज के साथ [एक इमेज इज़ वर्थ 16x16 वर्ड्स: ट्रांसफॉर्मर्स फॉर इमेज रिकॉग्निशन एट स्केल](https://arxiv.org/abs/2010.11929) एलेक्सी डोसोवित्स्की, लुकास बेयर, अलेक्जेंडर कोलेसनिकोव, डिर्क वीसेनबोर्न, शियाओहुआ झाई, थॉमस अनटरथिनर, मुस्तफा देहघानी, मैथियास मिंडरर, जॉर्ज हेगोल्ड, सिल्वेन गेली, जैकब उस्ज़कोरेइट द्वारा हॉल्सबी द्वारा पोस्ट किया गया।
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP से) साथ वाला पेपर [VisualBERT: A Simple and Performant Baseline for Vision and Language](https:/ /arxiv.org/pdf/1908.03557) लियुनियन हेरोल्ड ली, मार्क यात्स्कर, दा यिन, चो-जुई हसीह, काई-वेई चांग द्वारा। 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP से) साथ वाला पेपर [VisualBERT: A Simple and Performant Baseline for Vision and Language](https:/ /arxiv.org/pdf/1908.03557) लियुनियन हेरोल्ड ली, मार्क यात्स्कर, दा यिन, चो-जुई हसीह, काई-वेई चांग द्वारा।
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/main/model_doc/vitdet)** (Meta AI से) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. द्वाराअनुसंधान पत्र [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) के साथ जारी किया गया
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (मेटा एआई से) साथ में कागज [मास्कड ऑटोएन्कोडर स्केलेबल विजन लर्नर्स हैं](https://arxiv.org/ एब्स/2111.06377) कैमिंग हे, ज़िनेली चेन, सेनिंग ज़ी, यांगहो ली, पिओट्र डॉलर, रॉस गिर्शिक द्वारा। 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (मेटा एआई से) साथ में कागज [मास्कड ऑटोएन्कोडर स्केलेबल विजन लर्नर्स हैं](https://arxiv.org/ एब्स/2111.06377) कैमिंग हे, ज़िनेली चेन, सेनिंग ज़ी, यांगहो ली, पिओट्र डॉलर, रॉस गिर्शिक द्वारा।
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (मेटा एआई से) साथ में कागज [लेबल-कुशल सीखने के लिए मास्क्ड स्याम देश के नेटवर्क](https://arxiv. org/abs/2204.07141) महमूद असरान, मथिल्डे कैरन, ईशान मिश्रा, पियोट्र बोजानोवस्की, फ्लोरियन बोर्डेस, पास्कल विंसेंट, आर्मंड जौलिन, माइकल रब्बत, निकोलस बल्लास द्वारा। 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (मेटा एआई से) साथ में कागज [लेबल-कुशल सीखने के लिए मास्क्ड स्याम देश के नेटवर्क](https://arxiv. org/abs/2204.07141) महमूद असरान, मथिल्डे कैरन, ईशान मिश्रा, पियोट्र बोजानोवस्की, फ्लोरियन बोर्डेस, पास्कल विंसेंट, आर्मंड जौलिन, माइकल रब्बत, निकोलस बल्लास द्वारा।
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
......
...@@ -497,6 +497,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ ...@@ -497,6 +497,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP から) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang から公開された研究論文: [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP から) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang から公開された研究論文: [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557)
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VitDet](https://huggingface.co/docs/transformers/main/model_doc/vitdet)** (Meta AI から) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. から公開された研究論文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI から) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick から公開された研究論文: [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI から) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick から公開された研究論文: [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377)
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI から) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas から公開された研究論文: [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI から) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas から公開された研究論文: [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141)
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
......
...@@ -412,6 +412,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 ...@@ -412,6 +412,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다. 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다. 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다. 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VitDet](https://huggingface.co/docs/transformers/main/model_doc/vitdet)** (Meta AI 에서 제공)은 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.의 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)논문과 함께 발표했습니다.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다. 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다. 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
......
...@@ -436,6 +436,7 @@ conda install -c huggingface transformers ...@@ -436,6 +436,7 @@ conda install -c huggingface transformers
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VitDet](https://huggingface.co/docs/transformers/main/model_doc/vitdet)** (来自 Meta AI) 伴随论文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) 由 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He 发布。
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布. 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (来自 Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) 由 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (来自 Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) 由 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
......
...@@ -448,6 +448,7 @@ conda install -c huggingface transformers ...@@ -448,6 +448,7 @@ conda install -c huggingface transformers
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/main/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
......
...@@ -558,6 +558,8 @@ ...@@ -558,6 +558,8 @@
title: Vision Transformer (ViT) title: Vision Transformer (ViT)
- local: model_doc/vit_hybrid - local: model_doc/vit_hybrid
title: ViT Hybrid title: ViT Hybrid
- local: model_doc/vitdet
title: ViTDet
- local: model_doc/vit_mae - local: model_doc/vit_mae
title: ViTMAE title: ViTMAE
- local: model_doc/vit_msn - local: model_doc/vit_msn
......
...@@ -252,6 +252,7 @@ The documentation is organized into five sections: ...@@ -252,6 +252,7 @@ The documentation is organized into five sections:
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. 1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[ViT Hybrid](model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. 1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. 1. **[ViTMSN](model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[ViViT](model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[ViViT](model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
...@@ -471,6 +472,7 @@ Flax), PyTorch, and/or TensorFlow. ...@@ -471,6 +472,7 @@ Flax), PyTorch, and/or TensorFlow.
| VisualBERT | ✅ | ❌ | ❌ | | VisualBERT | ✅ | ❌ | ❌ |
| ViT | ✅ | ✅ | ✅ | | ViT | ✅ | ✅ | ✅ |
| ViT Hybrid | ✅ | ❌ | ❌ | | ViT Hybrid | ✅ | ❌ | ❌ |
| VitDet | ✅ | ❌ | ❌ |
| ViTMAE | ✅ | ✅ | ❌ | | ViTMAE | ✅ | ✅ | ❌ |
| ViTMSN | ✅ | ❌ | ❌ | | ViTMSN | ✅ | ❌ | ❌ |
| ViViT | ✅ | ❌ | ❌ | | ViViT | ✅ | ❌ | ❌ |
......
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ViTDet
## Overview
The ViTDet model was proposed in [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
VitDet leverages the plain [Vision Transformer](vit) for the task of object detection.
The abstract from the paper is the following:
*We explore the plain, non-hierarchical Vision Transformer (ViT) as a backbone network for object detection. This design enables the original ViT architecture to be fine-tuned for object detection without needing to redesign a hierarchical backbone for pre-training. With minimal adaptations for fine-tuning, our plain-backbone detector can achieve competitive results. Surprisingly, we observe: (i) it is sufficient to build a simple feature pyramid from a single-scale feature map (without the common FPN design) and (ii) it is sufficient to use window attention (without shifting) aided with very few cross-window propagation blocks. With plain ViT backbones pre-trained as Masked Autoencoders (MAE), our detector, named ViTDet, can compete with the previous leading methods that were all based on hierarchical backbones, reaching up to 61.3 AP_box on the COCO dataset using only ImageNet-1K pre-training. We hope our study will draw attention to research on plain-backbone detectors.*
Tips:
- For the moment, only the backbone is available.
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/facebookresearch/detectron2/tree/main/projects/ViTDet).
## VitDetConfig
[[autodoc]] VitDetConfig
## VitDetModel
[[autodoc]] VitDetModel
- forward
\ No newline at end of file
...@@ -586,6 +586,7 @@ _import_structure = { ...@@ -586,6 +586,7 @@ _import_structure = {
"models.vit_hybrid": ["VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTHybridConfig"], "models.vit_hybrid": ["VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTHybridConfig"],
"models.vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"], "models.vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"],
"models.vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"], "models.vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"],
"models.vitdet": ["VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP", "VitDetConfig"],
"models.vivit": [ "models.vivit": [
"VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"VivitConfig", "VivitConfig",
...@@ -2925,6 +2926,14 @@ else: ...@@ -2925,6 +2926,14 @@ else:
"ViTMSNPreTrainedModel", "ViTMSNPreTrainedModel",
] ]
) )
_import_structure["models.vitdet"].extend(
[
"VITDET_PRETRAINED_MODEL_ARCHIVE_LIST",
"VitDetBackbone",
"VitDetModel",
"VitDetPreTrainedModel",
]
)
_import_structure["models.vivit"].extend( _import_structure["models.vivit"].extend(
[ [
"VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
...@@ -4632,6 +4641,7 @@ if TYPE_CHECKING: ...@@ -4632,6 +4641,7 @@ if TYPE_CHECKING:
from .models.vit_hybrid import VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTHybridConfig from .models.vit_hybrid import VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTHybridConfig
from .models.vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig from .models.vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
from .models.vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig from .models.vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
from .models.vitdet import VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP, VitDetConfig
from .models.vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig from .models.vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
from .models.wav2vec2 import ( from .models.wav2vec2 import (
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
...@@ -6577,6 +6587,12 @@ if TYPE_CHECKING: ...@@ -6577,6 +6587,12 @@ if TYPE_CHECKING:
ViTMSNModel, ViTMSNModel,
ViTMSNPreTrainedModel, ViTMSNPreTrainedModel,
) )
from .models.vitdet import (
VITDET_PRETRAINED_MODEL_ARCHIVE_LIST,
VitDetBackbone,
VitDetModel,
VitDetPreTrainedModel,
)
from .models.vivit import ( from .models.vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification, VivitForVideoClassification,
......
...@@ -210,6 +210,7 @@ from . import ( ...@@ -210,6 +210,7 @@ from . import (
vit_hybrid, vit_hybrid,
vit_mae, vit_mae,
vit_msn, vit_msn,
vitdet,
vivit, vivit,
wav2vec2, wav2vec2,
wav2vec2_conformer, wav2vec2_conformer,
......
...@@ -218,6 +218,7 @@ CONFIG_MAPPING_NAMES = OrderedDict( ...@@ -218,6 +218,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("vit_hybrid", "ViTHybridConfig"), ("vit_hybrid", "ViTHybridConfig"),
("vit_mae", "ViTMAEConfig"), ("vit_mae", "ViTMAEConfig"),
("vit_msn", "ViTMSNConfig"), ("vit_msn", "ViTMSNConfig"),
("vitdet", "VitDetConfig"),
("vivit", "VivitConfig"), ("vivit", "VivitConfig"),
("wav2vec2", "Wav2Vec2Config"), ("wav2vec2", "Wav2Vec2Config"),
("wav2vec2-conformer", "Wav2Vec2ConformerConfig"), ("wav2vec2-conformer", "Wav2Vec2ConformerConfig"),
...@@ -408,6 +409,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict( ...@@ -408,6 +409,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
("vit_hybrid", "VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_hybrid", "VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vit_mae", "VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_mae", "VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vit_msn", "VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_msn", "VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vitdet", "VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vivit", "VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vivit", "VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("wav2vec2", "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2", "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("wav2vec2-conformer", "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2-conformer", "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
...@@ -640,6 +642,7 @@ MODEL_NAMES_MAPPING = OrderedDict( ...@@ -640,6 +642,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("vit_hybrid", "ViT Hybrid"), ("vit_hybrid", "ViT Hybrid"),
("vit_mae", "ViTMAE"), ("vit_mae", "ViTMAE"),
("vit_msn", "ViTMSN"), ("vit_msn", "ViTMSN"),
("vitdet", "VitDet"),
("vivit", "ViViT"), ("vivit", "ViViT"),
("wav2vec2", "Wav2Vec2"), ("wav2vec2", "Wav2Vec2"),
("wav2vec2-conformer", "Wav2Vec2-Conformer"), ("wav2vec2-conformer", "Wav2Vec2-Conformer"),
......
...@@ -204,6 +204,7 @@ MODEL_MAPPING_NAMES = OrderedDict( ...@@ -204,6 +204,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("vit_hybrid", "ViTHybridModel"), ("vit_hybrid", "ViTHybridModel"),
("vit_mae", "ViTMAEModel"), ("vit_mae", "ViTMAEModel"),
("vit_msn", "ViTMSNModel"), ("vit_msn", "ViTMSNModel"),
("vitdet", "VitDetModel"),
("vivit", "VivitModel"), ("vivit", "VivitModel"),
("wav2vec2", "Wav2Vec2Model"), ("wav2vec2", "Wav2Vec2Model"),
("wav2vec2-conformer", "Wav2Vec2ConformerModel"), ("wav2vec2-conformer", "Wav2Vec2ConformerModel"),
...@@ -1061,6 +1062,7 @@ MODEL_FOR_BACKBONE_MAPPING_NAMES = OrderedDict( ...@@ -1061,6 +1062,7 @@ MODEL_FOR_BACKBONE_MAPPING_NAMES = OrderedDict(
("resnet", "ResNetBackbone"), ("resnet", "ResNetBackbone"),
("swin", "SwinBackbone"), ("swin", "SwinBackbone"),
("timm_backbone", "TimmBackbone"), ("timm_backbone", "TimmBackbone"),
("vitdet", "VitDetBackbone"),
] ]
) )
......
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_import_structure = {"configuration_vitdet": ["VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP", "VitDetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_vitdet"] = [
"VITDET_PRETRAINED_MODEL_ARCHIVE_LIST",
"VitDetModel",
"VitDetPreTrainedModel",
"VitDetBackbone",
]
if TYPE_CHECKING:
from .configuration_vitdet import VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP, VitDetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vitdet import (
VITDET_PRETRAINED_MODEL_ARCHIVE_LIST,
VitDetBackbone,
VitDetModel,
VitDetPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VitDet model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/vit-det-base": "https://huggingface.co/facebook/vit-det-base/resolve/main/config.json",
}
class VitDetConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VitDetModel`]. It is used to instantiate an
VitDet model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the VitDet
[google/vitdet-base-patch16-224](https://huggingface.co/google/vitdet-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
mlp_ratio (`int`, *optional*, defaults to 4):
Ratio of mlp hidden dim to embedding dim.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
pretrain_image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image during pretraining.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
drop_path_rate (`float`, *optional*, defaults to 0.0):
Stochastic depth rate.
window_block_indices (`List[int]`, *optional*):
List of indices of blocks that should have window attention instead of regular global self-attention.
residual_block_indices (`List[int]`, *optional*):
List of indices of blocks that should have an extra residual block after the MLP.
use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`):
Whether to add absolute position embeddings to the patch embeddings.
use_relative_position_embeddings (`bool`, *optional*, defaults to `False`):
Whether to add relative position embeddings to the attention maps.
window_size (`int`, *optional*, defaults to 0):
The size of the attention window.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage.
Example:
```python
>>> from transformers import VitDetConfig, VitDetModel
>>> # Initializing a VitDet configuration
>>> configuration = VitDetConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = VitDetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vitdet"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
mlp_ratio=4,
hidden_act="gelu",
dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
image_size=224,
pretrain_image_size=224,
patch_size=16,
num_channels=3,
qkv_bias=True,
drop_path_rate=0.0,
window_block_indices=[],
residual_block_indices=[],
use_absolute_position_embeddings=True,
use_relative_position_embeddings=False,
window_size=0,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.mlp_ratio = mlp_ratio
self.hidden_act = hidden_act
self.dropout_prob = dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.pretrain_image_size = pretrain_image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.drop_path_rate = drop_path_rate
self.window_block_indices = window_block_indices
self.residual_block_indices = residual_block_indices
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.use_relative_position_embeddings = use_relative_position_embeddings
self.window_size = window_size
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch ViTDet backbone."""
import collections.abc
import math
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput, BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_vitdet import VitDetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "VitDetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/vit-det-base"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
VITDET_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/vit-det-base",
# See all ViTDet models at https://huggingface.co/models?filter=vitdet
]
class VitDetEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) to be consumed by a Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.pretrain_image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
if config.use_absolute_position_embeddings:
# Initialize absolute positional embedding with pretrain image size.
num_positions = num_patches + 1
self.position_embeddings = nn.Parameter(torch.zeros(1, num_positions, config.hidden_size))
else:
self.position_embeddings = None
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def get_absolute_positions(self, abs_pos_embeddings, has_cls_token, height, width):
"""
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token dimension for the
original embeddings.
Args:
abs_pos_embeddings (`torch.Tensor`):
Absolute positional embeddings with (1, num_position, num_channels).
has_cls_token (`bool`):
If true, has 1 embedding in abs_pos_embeddings for cls token.
height (`int`):
Height of input image tokens.
width (`int`):
Width of input image tokens.
Returns:
Absolute positional embeddings after processing with shape (1, height, width, num_channels)
"""
if has_cls_token:
abs_pos_embeddings = abs_pos_embeddings[:, 1:]
num_position = abs_pos_embeddings.shape[1]
size = int(math.sqrt(num_position))
if size * size != num_position:
raise ValueError("Absolute position embeddings must be a square number.")
if size != height or size != width:
new_abs_pos_embeddings = nn.functional.interpolate(
abs_pos_embeddings.reshape(1, size, size, -1).permute(0, 3, 1, 2),
size=(height, width),
mode="bicubic",
align_corners=False,
)
return new_abs_pos_embeddings.permute(0, 2, 3, 1)
else:
return abs_pos_embeddings.reshape(1, height, width, -1)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
embeddings = self.projection(pixel_values)
if self.position_embeddings is not None:
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
embeddings = embeddings.permute(0, 2, 3, 1)
# add position embeddings
embeddings = embeddings + self.get_absolute_positions(
self.position_embeddings, True, embeddings.shape[1], embeddings.shape[2]
)
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
embeddings = embeddings.permute(0, 3, 1, 2)
return embeddings
def get_rel_pos(q_size, k_size, rel_pos):
"""
Get relative positional embeddings according to the relative positions of query and key sizes.
Args:
q_size (`int`):
Size of query q.
k_size (`int`):
Size of key k.
rel_pos (`torch.Tensor`):
Relative position embeddings (num_embeddings, num_channels).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel position embeddings.
rel_pos_resized = nn.functional.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_relative_positions(attn, queries, rel_pos_h, rel_pos_w, q_size, k_size):
"""
Calculate decomposed Relative Positional Embeddings as introduced in
[MViT2](https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py).
Args:
attn (`torch.Tensor`):
Attention map.
queries (`torch.Tensor`):
Query q in the attention layer with shape (batch_size, queries_height * queries_width, num_channels).
rel_pos_h (`torch.Tensor`):
Relative position embeddings (Lh, num_channels) for height axis.
rel_pos_w (`torch.Tensor`):
Relative position embeddings (Lw, num_channels) for width axis.
q_size (`Tuple[int]`):
Spatial sequence size of query q with (queries_height, queries_width).
k_size (`Tuple[int]`]):
Spatial sequence size of key k with (keys_height, keys_width).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
queries_height, queries_width = q_size
keys_height, keys_width = k_size
relative_height = get_rel_pos(queries_height, keys_height, rel_pos_h)
relative_width = get_rel_pos(queries_width, keys_width, rel_pos_w)
batch_size, _, dim = queries.shape
r_q = queries.reshape(batch_size, queries_height, queries_width, dim)
relative_height = torch.einsum("bhwc,hkc->bhwk", r_q, relative_height)
relative_weight = torch.einsum("bhwc,wkc->bhwk", r_q, relative_width)
attn = (
attn.view(batch_size, queries_height, queries_width, keys_height, keys_width)
+ relative_height[:, :, :, :, None]
+ relative_weight[:, :, :, None, :]
).view(batch_size, queries_height * queries_width, keys_height * keys_width)
return attn
class VitDetAttention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(self, config, input_size=None):
"""
Args:
config (`VitDetConfig`):
Model configuration.
input_size (`Tuple[int]`, *optional*):
Input resolution, only required in case relative position embeddings are added.
"""
super().__init__()
dim = config.hidden_size
num_heads = config.num_attention_heads
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_relative_position_embeddings = config.use_relative_position_embeddings
if self.use_relative_position_embeddings:
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, hidden_state, output_attentions=False):
batch_size, height, width, _ = hidden_state.shape
# qkv with shape (3, batch_size, num_heads, height * width, num_channels)
qkv = self.qkv(hidden_state).reshape(batch_size, height * width, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# queries, keys and values have shape (batch_size * num_heads, height * width, num_channels)
queries, keys, values = qkv.reshape(3, batch_size * self.num_heads, height * width, -1).unbind(0)
attention_scores = (queries * self.scale) @ keys.transpose(-2, -1)
if self.use_relative_position_embeddings:
attention_scores = add_decomposed_relative_positions(
attention_scores, queries, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
)
attention_probs = attention_scores.softmax(dim=-1)
hidden_state = attention_probs @ values
hidden_state = hidden_state.view(batch_size, self.num_heads, height, width, -1)
hidden_state = hidden_state.permute(0, 2, 3, 1, 4)
hidden_state = hidden_state.reshape(batch_size, height, width, -1)
hidden_state = self.proj(hidden_state)
if output_attentions:
attention_probs = attention_probs.reshape(
batch_size, self.num_heads, attention_probs.shape[-2], attention_probs.shape[-1]
)
outputs = (hidden_state, attention_probs)
else:
outputs = (hidden_state,)
return outputs
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class VitDetDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class VitDetLayerNorm(nn.Module):
"""
A LayerNorm variant, popularized by Transformers, that performs point-wise mean and variance normalization over the
channel dimension for inputs that have shape (batch_size, channels, height, width).
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119
"""
def __init__(self, normalized_shape, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.normalized_shape = (normalized_shape,)
def forward(self, x):
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class VitDetResBottleneckBlock(nn.Module):
"""
The standard bottleneck residual block without the last activation layer. It contains 3 conv layers with kernels
1x1, 3x3, 1x1.
"""
def __init__(self, config, in_channels, out_channels, bottleneck_channels):
"""
Args:
config (`VitDetConfig`):
Model configuration.
in_channels (`int`):
Number of input channels.
out_channels (`int`):
Number of output channels.
bottleneck_channels (`int`):
Number of output channels for the 3x3 "bottleneck" conv layers.
"""
super().__init__()
self.conv1 = nn.Conv2d(in_channels, bottleneck_channels, 1, bias=False)
self.norm1 = VitDetLayerNorm(bottleneck_channels)
self.act1 = ACT2FN[config.hidden_act]
self.conv2 = nn.Conv2d(bottleneck_channels, bottleneck_channels, 3, padding=1, bias=False)
self.norm2 = VitDetLayerNorm(bottleneck_channels)
self.act2 = ACT2FN[config.hidden_act]
self.conv3 = nn.Conv2d(bottleneck_channels, out_channels, 1, bias=False)
self.norm3 = VitDetLayerNorm(out_channels)
def forward(self, x):
out = x
for layer in self.children():
out = layer(out)
out = x + out
return out
class VitDetMlp(nn.Module):
def __init__(self, config, in_features: int, hidden_features: int) -> None:
super().__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = ACT2FN[config.hidden_act]
self.fc2 = nn.Linear(hidden_features, in_features)
self.drop = nn.Dropout(config.dropout_prob)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(hidden_state, window_size):
"""
Partition into non-overlapping windows with padding if needed.
Args:
hidden_state (`torch.Tensor`):
Input tokens with [batch_size, height, width, num_channels].
window_size (`int`):
Window size.
Returns:
`tuple(torch.FloatTensor)` comprising various elements:
- windows: windows after partition with [batch_size * num_windows, window_size, window_size, num_channels].
- (patch_height, patch_width): padded height and width before partition
"""
batch_size, height, width, num_channels = hidden_state.shape
pad_height = (window_size - height % window_size) % window_size
pad_width = (window_size - width % window_size) % window_size
if pad_height > 0 or pad_width > 0:
hidden_state = nn.functional.pad(hidden_state, (0, 0, 0, pad_width, 0, pad_height))
patch_height, patch_width = height + pad_height, width + pad_width
hidden_state = hidden_state.view(
batch_size, patch_height // window_size, window_size, patch_width // window_size, window_size, num_channels
)
windows = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
return windows, (patch_height, patch_width)
def window_unpartition(windows, window_size, pad_height_width, height_width):
"""
Window unpartition into original sequences and removing padding.
Args:
windows (`torch.Tensor`):
Input tokens with [batch_size * num_windows, window_size, window_size, num_channels].
window_size (`int`):
Window size.
pad_height_width (`Tuple[int]`):
Padded height and width (patch_height, patch_width).
height_width (`Tuple[int]`):
Original height and width before padding.
Returns:
hidden_state: unpartitioned sequences with [batch_size, height, width, num_channels].
"""
patch_height, patch_width = pad_height_width
height, width = height_width
batch_size = windows.shape[0] // (patch_height * patch_width // window_size // window_size)
hidden_state = windows.view(
batch_size, patch_height // window_size, patch_width // window_size, window_size, window_size, -1
)
hidden_state = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(batch_size, patch_height, patch_width, -1)
if patch_height > height or patch_width > width:
hidden_state = hidden_state[:, :height, :width, :].contiguous()
return hidden_state
class VitDetLayer(nn.Module):
"""This corresponds to the Block class in the original implementation."""
def __init__(
self, config: VitDetConfig, drop_path_rate: float = 0, window_size: int = 0, use_residual_block: bool = False
) -> None:
super().__init__()
dim = config.hidden_size
input_size = (config.image_size // config.patch_size, config.image_size // config.patch_size)
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = VitDetAttention(
config, input_size=input_size if window_size == 0 else (window_size, window_size)
)
self.drop_path = VitDetDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.mlp = VitDetMlp(config=config, in_features=dim, hidden_features=int(dim * config.mlp_ratio))
self.window_size = window_size
self.use_residual_block = use_residual_block
if self.use_residual_block:
# Use a residual block with bottleneck channel as dim // 2
self.residual = VitDetResBottleneckBlock(
config=config,
in_channels=dim,
out_channels=dim,
bottleneck_channels=dim // 2,
)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
hidden_states = hidden_states.permute(0, 2, 3, 1)
shortcut = hidden_states
hidden_states = self.norm1(hidden_states)
# Window partition
if self.window_size > 0:
height, width = hidden_states.shape[1], hidden_states.shape[2]
hidden_states, pad_height_width = window_partition(hidden_states, self.window_size)
self_attention_outputs = self.attention(
hidden_states,
output_attentions=output_attentions,
)
hidden_states = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# Reverse window partition
if self.window_size > 0:
hidden_states = window_unpartition(hidden_states, self.window_size, pad_height_width, (height, width))
# first residual connection
hidden_states = shortcut + self.drop_path(hidden_states)
hidden_states = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states)))
hidden_states = hidden_states.permute(0, 3, 1, 2)
if self.use_residual_block:
hidden_states = self.residual(hidden_states)
outputs = (hidden_states,) + outputs
return outputs
class VitDetEncoder(nn.Module):
def __init__(self, config: VitDetConfig) -> None:
super().__init__()
self.config = config
depth = config.num_hidden_layers
# stochastic depth decay rule
drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, depth)]
layers = []
for i in range(depth):
layers.append(
VitDetLayer(
config,
drop_path_rate=drop_path_rate[i],
window_size=config.window_size if i in config.window_block_indices else 0,
use_residual_block=i in config.residual_block_indices,
)
)
self.layer = nn.ModuleList(layers)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
layer_head_mask,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def caffe2_msra_fill(module: nn.Module) -> None:
"""
Initialize `module.weight` using the "MSRAFill" implemented in Caffe2. Also initializes `module.bias` to 0.
Source: https://detectron2.readthedocs.io/en/latest/_modules/fvcore/nn/weight_init.html.
Args:
module (torch.nn.Module): module to initialize.
"""
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
if module.bias is not None:
nn.init.constant_(module.bias, 0)
class VitDetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = VitDetConfig
base_model_prefix = "vitdet"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = []
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, VitDetEmbeddings):
module.position_embeddings.data = nn.init.trunc_normal_(
module.position_embeddings.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.position_embeddings.dtype)
elif isinstance(module, VitDetAttention) and self.config.use_relative_position_embeddings:
module.rel_pos_h.data = nn.init.trunc_normal_(
module.rel_pos_h.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
)
module.rel_pos_w.data = nn.init.trunc_normal_(
module.rel_pos_w.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
)
elif isinstance(module, VitDetResBottleneckBlock):
for layer in [module.conv1, module.conv2, module.conv3]:
caffe2_msra_fill(layer)
for layer in [module.norm1, module.norm2]:
layer.weight.data.fill_(1.0)
layer.bias.data.zero_()
# zero init last norm layer.
module.norm3.weight.data.zero_()
module.norm3.bias.data.zero_()
def _set_gradient_checkpointing(self, module: VitDetEncoder, value: bool = False) -> None:
if isinstance(module, VitDetEncoder):
module.gradient_checkpointing = value
VITDET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`VitDetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VITDET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare VitDet Transformer model outputting raw hidden-states without any specific head on top.",
VITDET_START_DOCSTRING,
)
class VitDetModel(VitDetPreTrainedModel):
def __init__(self, config: VitDetConfig):
super().__init__(config)
self.config = config
self.embeddings = VitDetEmbeddings(config)
self.encoder = VitDetEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> VitDetEmbeddings:
return self.embeddings.projection
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
ViTDet backbone, to be used with frameworks like Mask R-CNN.
""",
VITDET_START_DOCSTRING,
)
class VitDetBackbone(VitDetPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.embeddings = VitDetEmbeddings(config)
self.encoder = VitDetEncoder(config)
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
# initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> VitDetEmbeddings:
return self.embeddings.projection
@add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
>>> model = AutoBackbone.from_pretrained("facebook/convnext-tiny-224")
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
output_hidden_states=True,
output_attentions=output_attentions,
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
feature_maps += (hidden_state,)
if not return_dict:
if output_hidden_states:
output = (feature_maps,) + outputs[1:]
else:
output = (feature_maps,) + outputs[2:]
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
...@@ -7898,6 +7898,30 @@ class ViTMSNPreTrainedModel(metaclass=DummyObject): ...@@ -7898,6 +7898,30 @@ class ViTMSNPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"]) requires_backends(self, ["torch"])
VITDET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class VitDetBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VitDetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VitDetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViTDet model. """
import inspect
import unittest
from transformers import VitDetConfig
from transformers.testing_utils import require_torch, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import VitDetBackbone, VitDetModel
class VitDetModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.num_patches_one_direction = self.image_size // self.patch_size
self.seq_length = (self.image_size // self.patch_size) ** 2
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return VitDetConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values, labels):
model = VitDetModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction),
)
def create_and_check_backbone(self, config, pixel_values, labels):
model = VitDetBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify hidden states
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
self.parent.assertListEqual(
list(result.feature_maps[0].shape),
[self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction],
)
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
self.parent.assertListEqual(model.channels, [config.hidden_size])
# verify backbone works with out_features=None
config.out_features = None
model = VitDetBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(
list(result.feature_maps[0].shape),
[self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction],
)
# verify channels
self.parent.assertEqual(len(model.channels), 1)
self.parent.assertListEqual(model.channels, [config.hidden_size])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class VitDetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as VitDet does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (VitDetModel, VitDetBackbone) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": VitDetModel} if is_torch_available() else {}
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = VitDetModelTester(self)
self.config_tester = ConfigTester(self, config_class=VitDetConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="VitDet does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_backbone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = self.model_tester.num_hidden_layers
self.assertEqual(len(hidden_states), expected_num_stages + 1)
# VitDet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[
self.model_tester.num_patches_one_direction,
self.model_tester.num_patches_one_direction,
],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# overwrite since VitDet only supports retraining gradients of hidden states
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
@unittest.skip(reason="VitDet does not support feedforward chunking")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="VitDet does not have standalone checkpoints since it used as backbone in other models")
def test_model_from_pretrained(self):
pass
@require_torch
class VitDetBackboneTest(unittest.TestCase, BackboneTesterMixin):
all_model_classes = (VitDetBackbone,) if is_torch_available() else ()
config_class = VitDetConfig
has_attentions = False
def setUp(self):
self.model_tester = VitDetModelTester(self)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment