Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
4a353cac
Unverified
Commit
4a353cac
authored
Mar 15, 2022
by
mowafess
Committed by
GitHub
Mar 15, 2022
Browse files
added type hints to yoso (#16163)
parent
c1c17bd0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
44 additions
and
43 deletions
+44
-43
src/transformers/models/yoso/modeling_yoso.py
src/transformers/models/yoso/modeling_yoso.py
+44
-43
No files found.
src/transformers/models/yoso/modeling_yoso.py
View file @
4a353cac
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
import
math
import
math
import
os
import
os
from
typing
import
Optional
,
Tuple
,
Union
import
torch
import
torch
import
torch.utils.checkpoint
import
torch.utils.checkpoint
...
@@ -779,16 +780,16 @@ class YosoModel(YosoPreTrainedModel):
...
@@ -779,16 +780,16 @@ class YosoModel(YosoPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
BaseModelOutputWithCrossAttentions
]
:
output_attentions
=
output_attentions
if
output_attentions
is
not
None
else
self
.
config
.
output_attentions
output_attentions
=
output_attentions
if
output_attentions
is
not
None
else
self
.
config
.
output_attentions
output_hidden_states
=
(
output_hidden_states
=
(
output_hidden_states
if
output_hidden_states
is
not
None
else
self
.
config
.
output_hidden_states
output_hidden_states
if
output_hidden_states
is
not
None
else
self
.
config
.
output_hidden_states
...
@@ -882,17 +883,17 @@ class YosoForMaskedLM(YosoPreTrainedModel):
...
@@ -882,17 +883,17 @@ class YosoForMaskedLM(YosoPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
MaskedLMOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
...
@@ -978,17 +979,17 @@ class YosoForSequenceClassification(YosoPreTrainedModel):
...
@@ -978,17 +979,17 @@ class YosoForSequenceClassification(YosoPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
SequenceClassifierOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
@@ -1071,17 +1072,17 @@ class YosoForMultipleChoice(YosoPreTrainedModel):
...
@@ -1071,17 +1072,17 @@ class YosoForMultipleChoice(YosoPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
MultipleChoiceModelOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment