"git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "1e3cc6b2bdb0d3700e03d5f187b0bc0d07cb1b85"
Unverified Commit 48a8f3da authored by Jason Phang's avatar Jason Phang Committed by GitHub
Browse files

Add DebertaV2ForMultipleChoice (#17135)

parent 4ad2f68e
......@@ -107,6 +107,11 @@ contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code
[[autodoc]] DebertaV2ForQuestionAnswering
- forward
## DebertaV2ForMultipleChoice
[[autodoc]] DebertaV2ForMultipleChoice
- forward
## TFDebertaV2Model
[[autodoc]] TFDebertaV2Model
......
......@@ -948,6 +948,7 @@ else:
[
"DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaV2ForMaskedLM",
"DebertaV2ForMultipleChoice",
"DebertaV2ForQuestionAnswering",
"DebertaV2ForSequenceClassification",
"DebertaV2ForTokenClassification",
......@@ -3296,6 +3297,7 @@ if TYPE_CHECKING:
from .models.deberta_v2 import (
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaV2ForMaskedLM,
DebertaV2ForMultipleChoice,
DebertaV2ForQuestionAnswering,
DebertaV2ForSequenceClassification,
DebertaV2ForTokenClassification,
......
......@@ -597,6 +597,7 @@ MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict(
("funnel", "FunnelForMultipleChoice"),
("mpnet", "MPNetForMultipleChoice"),
("ibert", "IBertForMultipleChoice"),
("deberta-v2", "DebertaV2ForMultipleChoice"),
]
)
......
......@@ -65,6 +65,7 @@ else:
_import_structure["modeling_deberta_v2"] = [
"DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaV2ForMaskedLM",
"DebertaV2ForMultipleChoice",
"DebertaV2ForQuestionAnswering",
"DebertaV2ForSequenceClassification",
"DebertaV2ForTokenClassification",
......@@ -110,6 +111,7 @@ if TYPE_CHECKING:
from .modeling_deberta_v2 import (
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaV2ForMaskedLM,
DebertaV2ForMultipleChoice,
DebertaV2ForQuestionAnswering,
DebertaV2ForSequenceClassification,
DebertaV2ForTokenClassification,
......
......@@ -27,6 +27,7 @@ from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
......@@ -1511,3 +1512,106 @@ class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
DEBERTA_START_DOCSTRING,
)
class DebertaV2ForMultipleChoice(DebertaV2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
num_labels = getattr(config, "num_labels", 2)
self.num_labels = num_labels
self.deberta = DebertaV2Model(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
self.classifier = nn.Linear(output_dim, 1)
drop_out = getattr(config, "cls_dropout", None)
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
self.dropout = StableDropout(drop_out)
self.init_weights()
def get_input_embeddings(self):
return self.deberta.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.deberta.set_input_embeddings(new_embeddings)
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.deberta(
flat_input_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
......@@ -1406,6 +1406,13 @@ class DebertaV2ForMaskedLM(metaclass=DummyObject):
requires_backends(self, ["torch"])
class DebertaV2ForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaV2ForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
......
......@@ -26,6 +26,7 @@ if is_torch_available():
from transformers import (
DebertaV2ForMaskedLM,
DebertaV2ForMultipleChoice,
DebertaV2ForQuestionAnswering,
DebertaV2ForSequenceClassification,
DebertaV2ForTokenClassification,
......@@ -192,6 +193,23 @@ class DebertaV2ModelTester(object):
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_deberta_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = DebertaV2ForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
......@@ -217,6 +235,7 @@ class DebertaV2ModelTest(ModelTesterMixin, unittest.TestCase):
DebertaV2ForSequenceClassification,
DebertaV2ForTokenClassification,
DebertaV2ForQuestionAnswering,
DebertaV2ForMultipleChoice,
)
if is_torch_available()
else ()
......@@ -254,6 +273,10 @@ class DebertaV2ModelTest(ModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment